Skip to main content

Advertisement

Log in

Combining climate with other influential factors for modelling the impact of climate change on species distribution

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We tested two approaches to forecast species distributions while balancing the impact of climate change against the inertia promoted by other influential factors that have been forecast as not changing. Given that mountain species are presumed to be more at risk due to climate warming, we selected an amphibian, a reptile, a bird, and a mammal species present in the Spanish mountains, to model their distributional response to climate change during this century. The climatic forecasts were made according to the general circulation models CGCM2 and ECHAM4 and to the A2 and B2 emission scenarios. We modelled the response of the species to spatial, topographic, human, and climatic variables separately. In our first approach, we compared each of these single-factor models using the Akaike Information Criterion, and produced a combined model weighting each factor (spatial, topographic, human, and climatic) according to Akaike weights. This procedure overestimated the best model, and the other factors were neglected in the combined model output. In our second approach, we produced a combined model using stepwise selection of the variables previously selected within each factor. In this way every factor was effectively represented in the combined explanatory model of the distributional response of the species to environmental conditions. This enabled the construction of models that combined climate with the other explanatory factors, to be later extrapolated to the future by replacing current climatic and human values with those expected from each emission and socio-economic scenario, while preserving spatial and topographic variables in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo P, Cassinello J, Hortal J, Gortázar C (2007) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica):a habitat suitability model approach. Divers Distrib 13:587–597

    Article  Google Scholar 

  • Agencia Estatal de Meteorología of Spain (AEMET) Ministerio de Medio Ambiente (http://www.aemet.es/es/elclima/cambio_climat/escenarios)

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory. Akadémia Kiadó, Budapest, pp 267–281

    Google Scholar 

  • Aragón P, Lobo JM, Olalla-Tárraga MA, Rodríguez MA (2010) The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Glob Ecol Biogeogr 19:40–49. doi:10.1111/j.1466-8238.2009.00488.x

    Article  Google Scholar 

  • Barbosa AM, Real R, Olivero J, Vargas JM (2003) Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biol Conserv 114:377–387

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  • Brunet M, Casado MJ, de Castro M, Galán P, Lopez JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodríguez E, Torres L (2007) Generación de escenarios de cambio climático para España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Burham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-teoretic approach. Springer, New York

    Google Scholar 

  • Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH (2005) Analysis of vegetation distribution in Interior Alaska and sensitivity to climate change using a logistic regression approach. J Biogeogr 32:863–878

    Article  Google Scholar 

  • Capel JJ (1981) Los climas de España. Oikos-Tau, S.A. Ediciones, Barcelona

  • Currie DJ (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems 4:216–225

    Article  Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998a) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  Google Scholar 

  • Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS (1998b) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612

    Article  Google Scholar 

  • De Frene P, Kolb A, Verheyen K, Brunet J, Chabrerie O, Decocq G, Diekmann M, Eriksson O, Heinken T, Hermy M, Jogar Ü, Stanton S, Quataert P, Zindel R, Zobel M, Graae JB (2009) Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Glob Ecol Biogeogr 18:641–651

    Article  Google Scholar 

  • Díaz-Almela E, Marbà N, Duarte CM (2007) Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob Change Biol 13:224–235

    Article  Google Scholar 

  • Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) A Global Population database for estimating populations at risk. Photogramm Eng Rem S 66:849–857

    Google Scholar 

  • Dormann CF, Schweiger O, Arens P, Augenstein I, Aviron St, Bailey D, Baudry J, Billeter R, Bugter R, Bukácek R, Burel F, Cerny M, De Cock R, De Blust G, DeFilippi R, Diekötter T, Dirksen J, Durka W, Edwards PJ, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz St, Koolstra B, Lausch A, Le Coeur D, Liira J, Maelfait JP, Opdam P, Roubalova M, Schermann-Legionnet A, Schermann N, Schmidt T, Smulders MJM, Speelmans M, Simova P, Verboom J, van Wingerden W, Zobel M (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett 11:235–244

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007) Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235

    Article  Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans AGU 81:583–585

    Google Scholar 

  • Foden W, Midgley GF, Hughes G, Bond WJ, Thuiller W, Hoffman MT, Kaleme P, Underhill LG, Rebelo A, Hannah L (2007) A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers Distrib 13:645–653

    Article  Google Scholar 

  • Font I (2000) Climatología de España y Portugal. Ediciones Universidad de Salamanca, Salamanca

    Google Scholar 

  • Foody GM (2008) Refining predictions of climate change impacts on plant species distribution through the use of local statistics. Ecol Inform 3:228–236. doi:10.1016/j.ecoinf.2008.02.002

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev 55:73–106

    Article  Google Scholar 

  • García LV (2003) Controlling the false discovery rate in ecological research. Trends Ecol Evol 18:553–554

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Girardin MP, Raulier F, Bernier PY, Tardif JC (2008) Response of tree growth to a changing climate in boreal central Canada: a comparison of empirical, process-based, and hybrid modeling approaches. Ecol Model 213:209–228

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2006) Climate change and bird phenology: a long-term study in the Iberian Peninsula. Glob Change Biol 12:1993–2004

    Article  Google Scholar 

  • Grabherr G (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14:146–50

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2008) Downscaling future climate change: Temperature scenarios for the Mediterranean area. Global Planet Change 63:127–131. doi:10.1016/j.gloplacha.2007.09.003

    Article  Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat suitability models with a virtual species. Ecol Model 145:111–121

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • IGN (1999) Mapa de carreteras. Península Ibérica, Baleares y Canarias. Instituto Geográfico Nacional/Ministerio de Fomento, Madrid

    Google Scholar 

  • IPCC (2007) Summary for policymakers climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6

    Article  Google Scholar 

  • Lavergne S, Thuiller W, Molina J, Debussche M (2005) Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region. J Biogeogr 32:799–811

    Article  Google Scholar 

  • Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lemoine N, Bauer HG, Peintinger M, Böhning-Gaese K (2007) Effects of climate and land-use change on species abundance in a central European bird community. Conserv Biol 21:495–503

    Article  Google Scholar 

  • Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Brown JH (2005) Distributions of species. In: Lomolino MV, Riddle BR, Brown JH (eds) Biogeography, 3rd edn. Sinauer, Sunderland, pp 65–96

    Google Scholar 

  • Luoto M, Heikkinen K (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Change Biol 14:483–494

    Article  Google Scholar 

  • Márquez AL, Real R, Vargas JM (2004) Dependence of broad-scale geographical variation in fleshy-fruited plant species richness on disperser bird species richness. Global Ecol Biogeogr 13:295–304

    Article  Google Scholar 

  • Martí M, del Moral JC (eds) (2003) Atlas de las aves reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, Spain

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Roy DB (2006) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504

    Google Scholar 

  • Muñoz AR, Real R (2006) Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers Distrib 12:656–665

    Article  Google Scholar 

  • Muñoz AR, Real R, Barbosa AM, Vargas JM (2005) Modelling the distribution of Bonelli’s eagle in Spain: implications for conservation planning. Divers Distrib 11:477–486

    Article  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, La Rovere LE, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) Emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Lasanta T, López-Moreno JI (2008) Climate Change in Mediterranean Mountains during the 21st Century. Ambio 37:280–285

    Article  Google Scholar 

  • ORNL (2001) LandScan 2000 global population database. Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee

  • Palomo LJ, Gisbert J, Blanco JC (2007) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–69

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147

    Article  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140

    Article  Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–554

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling. BioScience 51:363–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pleguezuelos JM, Márquez R, Lizana M (eds) (2004) Atlas y libro rojo de los anfibios y reptiles de España. Dirección General de Conservación de la Naturaleza-Asociación Herpetológica Española, Madrid, Spain

  • Pounds AJ, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  Google Scholar 

  • Price DT, McKenney DW, Papadopol P, Logan T, Hutchinson MF (2004) High resolution future scenario climate data for North America. In: Proceeding of the American meteorological society, 26th conference on agricultural and forest meteorology, Vancouver, BC, 23–27 August, 2004. http://ams.confex.com/ams/pdfpapers/78202.pdf

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistente. Glob Change Biol 15:15557–1569

    Article  Google Scholar 

  • Real R, Barbosa M, Porras D, Kin MS, Márquez AL, Guerrero JC, Palomo LJ, Justo ER, Vargas JM (2003) Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. J Biogeogr 30:939–947

    Article  Google Scholar 

  • Real R, Barbosa AM, Vargas JM (2006) Obtaining environmental favourability functions from logistic regression. Environ Ecol Stat 13:237–245

    Article  Google Scholar 

  • Real R, Márquez AL, Estrada A, Muñoz AR, Vargas JM (2008) Modelling chorotypes of invasive vertebrates in mainland Spain. Divers Distrib 14:364–373

    Article  Google Scholar 

  • Real R, Barbosa AM, Rodríguez A, García FJ, Vargas JM, Palomo LJ, Delibes M (2009) Conservation biogeography of ecologically-interacting species: the case of the Iberian lynx and the European rabbit. Divers Distrib 15:390–400. doi:10.1111/j.1472-4642.2008.00546.x

    Article  Google Scholar 

  • Rodrigo FS, Barriendos M (2008) Reconstruction of seasonal and annual rainfall variability in the Iberian peninsula (16th–20th centuries) from documentary data. Global Planet Change 63:243–257. doi:10.1016/j.gloplacha.2007.09.004

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44:163–180

    Article  Google Scholar 

  • Santos X, Brito JC, Sillero N, Pleguezuelos JM, Llorente GA, Fahdd S, Parellada X (2006) Inferring habitat-suitability areas with ecological modelling techniques and GIS: a contribution to assess the conservation status of Vipera latastei. Biol Conserv 130:416–425

    Article  Google Scholar 

  • Seoane J, Carrascal LM (2008) Interspecific differences in population trends of Spanish birds are related to habitat and climatic preferences. Glob Ecol Biogeogr 17:111–121

    Google Scholar 

  • Sitch S, Huntingfordw C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciaia P, Cox P, Friendlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Change Biol 14:2015–2039. doi:10.1111/j.1365-2486.2008.01626.x

    Article  Google Scholar 

  • Skov F, Svenning JC (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspect Plant Ecol 9:137–152

    Article  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD, Dawsons TP (2008a) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089–1103

    Article  Google Scholar 

  • Trivedi MR, Morecroft MD, Berry PM, Dawsons TP (2008b) Potential effects of climate change on plant communities in three montane nature reserves in Scotland, UK. Biol Conserv 141:1665–1675

    Article  Google Scholar 

  • US Geological Survey (1996) GTOPO30. Land processes distributed active archive center (LP DAAC), EROS data center. http://edcdaac.usgs.gov/gtopo30/gtopo30.asp

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc Roy Soc B 272:2561–2569

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc Roy Soc B 268:289–294

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887

    Article  Google Scholar 

  • Woodward FI, Beerling DJ (1997) The dynamics of vegetation change: health warnings for equilibrium ‘dodo’ models. Glob Ecol Biogeogr Lett 6:413–418

    Article  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luz Márquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez, A.L., Real, R., Olivero, J. et al. Combining climate with other influential factors for modelling the impact of climate change on species distribution. Climatic Change 108, 135–157 (2011). https://doi.org/10.1007/s10584-010-0010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-0010-8

Keywords

Navigation