Skip to main content

Advertisement

Log in

How well do integrated assessment models simulate climate change?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Integrated assessment models (IAMs) are regularly used to evaluate different policies of future emissions reductions. Since the global costs associated with these policies are immense, it is vital that the uncertainties in IAMs are quantified and understood. We first demonstrate the significant spread in the climate system and carbon cycle components of several contemporary IAMs. We then examine these components in more detail to understand the causes of differences, comparing the results with more complex climate models and earth system models (ESMs), where available. Our results show that in most cases the outcomes of IAMs are within the range of the outcomes of complex models, but differences are large enough to matter for policy advice. There are areas where IAMs would benefit from improvements (e.g. climate sensitivity, inertia in climate response, carbon cycle feedbacks). In some cases, additional climate model experiments are needed to be able to tune some of these improvements. This will require better communication between the IAM and ESM development communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouwman L, Kram T, Klein-Goldewijk K (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. The Netherlands Environmental Assessment Agency, Bilthoven

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:180–184

    Google Scholar 

  • den Elzen MGJ, Van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci U S A 104:17931–17936

    Article  Google Scholar 

  • Dufresne J-L, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Monfray P (2002) Effects of climate change due to CO2 increase on land and ocean carbon uptake. Geophys Res Lett 29:1405

    Article  Google Scholar 

  • Edmonds JA, Clarke J, Dooley J, Kim SH, Smith SJ (2004) Modelling greenhouse gas energy technology responses to climate change. Energy 29:1529–1536

    Article  Google Scholar 

  • Eickhout B, Den Elzen MG, Kreileman GJJ (2004) The atmosphere-ocean system of IMAGE 2.2. National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  • Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allan MR (2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32:L09702

    Article  Google Scholar 

  • Friedlingstein P (2008) A steep road to climate stabilization. Nature 451:297–298

    Article  Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp I, Von bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Füssel HM (2007) Methodological and empirical flaws in the design and application of simple climate-economy models. Clim Change 81:161–185

    Article  Google Scholar 

  • Goodess CM, Hanson C, Hulme M, Osborn TJ (2003) Representing climate and extreme weather events in integrated assessment models: a review of existing methods and options for development. Integr Assess 4:145–171

    Article  Google Scholar 

  • Häfele W, Anderer JAM, Nakicenovic N (1981) Energy in a finite world. Ballinger, Cambridge

    Google Scholar 

  • Harremoes P, Turner RK (2001) Methods for integrated assessment. Reg Environ Change 2:57–65

    Google Scholar 

  • Hof AF, den Elzen MGJ, van Vuuren DP (2008) Analysing the costs and benefits of climate policy: value judgements and scientific uncertainties. Glob Environ Change 18:412–424

    Article  Google Scholar 

  • Hooss G, Voss R, Hasselmann K, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle–climate system (NICCS). Clim Dyn 18:189–202

    Article  Google Scholar 

  • Hope C (2005) Integrated assessment models. In: Helm D (ed) Climate change policy. Oxford University Press, Oxford

    Google Scholar 

  • Hope C (2006) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC’s five reasons for concern. Integr Assess 6:19–56

    Google Scholar 

  • Huntingford C, Lowe J (2007) “Overshoot” scenarios and climate change. Science 316:829

    Article  Google Scholar 

  • Huntingford C, Lowe JA, Booth BBB, Jones CD, Harris GR, Gohar LK, Meir P (2009) Contributions of carbon cycle uncertainty to future climate projection spread. Tellus Ser B Chem Phys Meteorol 61:355–360

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001. In: Third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF, Le Quéré C, Sarmiento JL (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogeninic carbon uptake. Tellus 48B:397–417

    Google Scholar 

  • Joos F, Müller-Fürstenberger G, Stephan G (1999) Correcting the carbon cycle representation: how important is it for the economics of climate change? Environ Model Assess 4:133–140

    Article  Google Scholar 

  • Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Lashof DA, Tirpack DA (1989) Policy options for stabilising global climate. US Environmental Protection Agency, Washington

    Google Scholar 

  • Leemans R, Eickhout B, Strengers BJ, Bouwman AF, Schaefer M (2002) The consequences for the terrestrial carbon cycle of uncertainties in land use, climate and vegetation responses in the IPCC SRES scenarios. Sci China Ser C 45:126–136

    Google Scholar 

  • Lowe JA, Hewitt CD, Van Vuuren DP, Johns TC, Stehfest E, Royer J-F, van der Linden PJ (2009a) Will aggressive mitigation of emissions really avoid dangerous climate change? EOS 90:181–188

    Article  Google Scholar 

  • Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009b) How difficult is it to recover from dangerous levels of global warming? Environ Res Netw 4:1–9

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of carbon dioxide in the ocean: an inorganic ocean circulation carbon cycle model. Clim Dyn 2:63–90

    Article  Google Scholar 

  • Manne AS, Richels RG (2005) Merge: an integrated assessment model for global climate change. In: Loulou R, Waaub J-P, Zaccour G (eds) Energy and environment. Springer, New York

    Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinshausen M, Raper SCB, Wigley TML (2008) Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0. Atmos Chem Phys Discuss 8:6153–6272

    Article  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare B, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162

    Article  Google Scholar 

  • Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Clim Change 88:251–265

    Article  Google Scholar 

  • Mintzer I (1987) A matter of degrees: the potential for controlling the greenhouse effect. World Resources Institute, Washington

    Google Scholar 

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard KA, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer RJ, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report on New Scenarios. Intergovernmental Panel on Climate Change, Noordwijkerhout

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Nakicenovic (2000) Special Report on Emissions Scenarios (SRES). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Nordhaus WD (1979) The efficient use of energy resources. Yale University Press, New Haven

    Google Scholar 

  • Nordhaus WD (2008) A question of balance weighing the options on global warming policies. Yale University Press, New Haven

    Google Scholar 

  • Nordhaus WD, Boyer J (1999) Roll the DICE again: the economics of global warming. Yale University, New Haven

    Google Scholar 

  • Nusbaumer J, Matsumoto K (2008) Climate and carbon cycle changes under the overshoot scenario. Glob Planet Change 62:164–172

    Article  Google Scholar 

  • Plattner GK, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate–carbon cycle models. J Clim 21:2721–2751

    Article  Google Scholar 

  • Ramaswamy V (2001) Radiative forcing of climate change. In: JT H, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Revelle R, Suess H (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18

    Article  Google Scholar 

  • Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935

    Article  Google Scholar 

  • Rotmans J, de Boois H, Swart RJ (1990) An integrated model for the assessment of the greenhouse effect: the Dutch approach. Clim Change 16:331–356

    Article  Google Scholar 

  • Schimel DS (1998) The carbon equation. Nature 393:208–209

    Article  Google Scholar 

  • Schneider SH (1997) Integrated assessment modeling of global climate change: transparent rational tool for policy making and opaque screen hiding value-laden assumptions? Environ Model Assess 2:229–249

    Article  Google Scholar 

  • Schneider SH, Thompson SL (1981) Atmospheric CO2 and climate: Importance of the transient response. J Geophys Res 86:3135–3147

    Article  Google Scholar 

  • Schultz PA, Kasting JF (1997) Optimal reductions in CO2 emissions. Energy Policy 25:491–500

    Article  Google Scholar 

  • Shine KP, Derwent RG, Wuebbles DJ, Morcrette J-J (1990) Greenhouse gases and aerosols. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 Dynamic Global Vegetation Models (DGVMs). Glob Chang Biol 14:2015–2039

    Article  Google Scholar 

  • Smith SJ, Edmonds JA (2006) The economic implications of carbon cycle uncertainty. Tellus B 58:586–590

    Article  Google Scholar 

  • Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter DW, Jacoby HD, Prinn RG, Forest CE, Reilly JM, Wang C, Felzer B, Sarofim MC, Scott J, Stone PH, JM M, Cohen J (2005) The MIT Integrated Global System Model (IGSM) version 2: model description and baseline evaluation. MIT, Cambridge

    Google Scholar 

  • Solomon S, Plattner GP, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  Google Scholar 

  • Tol RSJ (2006) Multi-gas emission reduction for climate change policy: an application of FUND. Energy J 3:235–250

    Google Scholar 

  • Van der Sluijs JP (2002) Integrated assessment. In: Munn RE, Tolba M (eds) Encyclopaedia of global environmental change—responding to global environmental change. Wiley, London, pp 250–253

    Google Scholar 

  • Van Vuuren DP, Weyant J, De la Chesnaye F (2006) Multigas scenarios to stabilise radiative forcing. Energy Econ 28:102–120

    Article  Google Scholar 

  • Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  Google Scholar 

  • Van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, De La Chesnaye F, Den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci U S A 105:15258–15262

    Article  Google Scholar 

  • Warren R, de la Nava Santos S, Arnell NW, Bane M, Barker T, Barton C, Ford R, Füssel H-M, Hankin RKS, Klein R, Linstead C, Kohler J, Mitchell TD, Osborn TJ, Pan H, Raper SCB, Riley G, Schellnhüber HJ, Winne S, Anderson D (2008) Development and illustrative outputs of the Community Integrated Assessment System (CIAS), a multi-institutional modular integrated assessment approach for modelling climate change. Environ Model Softw 23:592–610

    Article  Google Scholar 

  • Weyant J, Davidson O, Dowlatabadi H, Edmonds J, Grubb M, Richels R, Rotmans J, Shukla P, Cline W, Fankhauser S, Tol R (1996) Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce JP, Lee H, Haites EF (eds) Climate change 1995–economic and social dimensions of climate change. Contribution of working group III to the second assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Weyant JP, de la Chesnaye FC, Blanford GJ (2007) Overview of EMF21: multigas mitigation and climate policy. Energy J #3:1–32

    Google Scholar 

  • Wigley TML (1993) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus Ser B Chem Phys Meteorol 45B:409–425

    Article  Google Scholar 

  • Wigley TML (2004) Overshoot pathways to CO2 concentration stabilization. Workshop on GHG stabilization scenarios, Tsukuba, Japan, 23 Jan 2004

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef P. van Vuuren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vuuren, D.P., Lowe, J., Stehfest, E. et al. How well do integrated assessment models simulate climate change?. Climatic Change 104, 255–285 (2011). https://doi.org/10.1007/s10584-009-9764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9764-2

Keywords

Navigation