Skip to main content
Log in

Completing the human genome: the progress and challenge of satellite DNA assembly

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Genomic studies rely on accurate chromosome assemblies to explore sequence-based models of cell biology, evolution and biomedical disease. However, even the extensively studied human genome has not yet reached a complete, ‘telomere-to-telomere’, chromosome assembly. The largest assembly gaps remain in centromeric regions and acrocentric short arms, sites known to contain megabase-sized arrays of tandem repeats, or satellite DNAs. This review aims to briefly address the progress and challenges of generating correct assemblies of satellite DNA arrays. Although the focus is placed on the human genome, many concepts presented here are applicable to other genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HVGM:

Human Variation Genome Map

ONT:

Oxford Nanopore Technology

PacBio:

Pacific Biosciences

rDNA:

Ribosomal DNA

WGS:

Whole genome shotgun

References

  • Alkan C, Ventura M, Archidiacono N et al (2007) Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLoS Comput Biol 3:1807–1818

    CAS  PubMed  Google Scholar 

  • Altemose N, Miga KH, Maggioni M et al (2014) Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput Biol 10:e1003628

    Article  PubMed Central  PubMed  Google Scholar 

  • Amini S, Pushkarev D, Christiansen L et al (2014) Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat Genet 46:1343–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biscotti M, Canapa A, Forconi M et al (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res Submitted

  • Burton JN, Adey A, Patwardhan RP et al (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaisson MJ, Huddleston J, Dennis MY et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eichler EE, Clark RA, She X (2004) An assessment of the sequence gaps: unfinished business in a finished human genome. Nat Rev Genet 5:345–354

    Article  CAS  PubMed  Google Scholar 

  • English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7:e47768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayden KE (2012) Human centromere genomics: now it’s personal. Chromosom Res 20:621–633

    Article  CAS  Google Scholar 

  • Hayden KE, Strome ED, Merrett SL et al (2013) Sequences associated with centromere competency in the human genome. Mol Cell Biol 33:763–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huddleston J, Ranade S, Malig M et al (2014) Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res 24:688–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain M, Fiddes IT, Miga KH et al (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12:351–356

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee C, Wevrick R, Fisher RB et al (1997) Human centromeric DNAs. Hum Genet 100:291–304

    Article  CAS  PubMed  Google Scholar 

  • Levy S, Sutton G, Ng PC et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed Central  PubMed  Google Scholar 

  • Luce AC, Sharma A, Mollere OS et al (2006) Precise centromere mapping using a combination of repeat junction markers and chromatin immunoprecipitation-polymerase chain reaction. Genetics 174:1057–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manuelidis L (1978) Chromosomal localization of complex and simple repeated human DNAs. Chromosoma 66:23–32

    Article  CAS  PubMed  Google Scholar 

  • Miga KH, Newton Y, Jain M et al (2014) Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res 24:697–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miga KH, Eisenhart C, Kent WJ (2015) Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments. Nucleic Acids Res in press

  • Nguyen N, Hickey G, Zerbino DR et al (2015) Building a pan-genome reference for a population. J Comput Biol 22:387–401

    Article  CAS  PubMed  Google Scholar 

  • Novak A, Rosen Y, Haussler D, Paten B (2015) Canonical, stable, general mapping using context schemes. Bioinformatics

  • Paten B, Novak A, Haussler D (2014) Mapping to a reference genome structure. arXiv preprint arXiv 1404.5010

  • Putnam NH et al (2015) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. arXiv 1502: 05331

  • Roizes G (2006) Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning. Nucleic Acids Res 34:1912–1924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20:529–533

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK et al (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Choo KH (1991) Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21. Nucleic Acids Res 19:271–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Fan HC, Behr B et al (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warburton PE, Willard HF (1990) Genomic analysis of sequence variation in tandemly repeated DNA. Evidence for localized homogeneous sequence domains within arrays of alpha-satellite DNA. J Mol Biol 216:3–16

    Article  CAS  PubMed  Google Scholar 

  • Warburton PE, Wevrick R, Mahtani MM et al (1992) Pulsed-field and two-dimensional gel electrophoresis of long arrays of tandemly repeated DNA: analysis of human centromeric alpha satellite. Methods Mol Biol 12:299–317

    CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 13:2731–2743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: High-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A 86:9394–9398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wevrick R, Willard HF (1991) Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19:2295–2301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  CAS  PubMed  Google Scholar 

  • Yunis JJ, Yasmineh WG (1971) Heterochromatin, satellite DNA, and cell function. Science 174:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang Y, Scheuring CF et al (2012) Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc 7:467–478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Miga.

Additional information

Responsible Editors: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miga, K.H. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosome Res 23, 421–426 (2015). https://doi.org/10.1007/s10577-015-9488-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9488-2

Keywords

Navigation