Skip to main content
Log in

TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystal (CNC) production suffers, among other problems, from low yields. The focus of this study was to investigate the universal effect of charge density, centrifugation, and mechanical treatment as limiting causes of yield. Microcrystalline cellulose (MCC) was used as the starting material in order to eliminate the relatively arbitrary yield losses caused by the hydrolysis conditions. To disintegrate MCC into nanocrystals, high surface charge in the form of carboxylic groups was introduced by TEMPO-mediated oxidation, after which the material was mechanically treated, and separated into fine and coarse fractions. The fine fraction collected as supernatant after separation by centrifugation had a yield of 17–20% independent of the mechanical treatment method or time used. The particle sizes of these fractions did not significantly differ from each other, which raises questions on the efficiency of the mechanical treatment (sonication) and centrifugation in traditional CNC production. The results imply that radically new approaches in preparation are needed for truly meaningful increases in the CNC yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261. doi:10.1007/BF01177736

    Article  CAS  Google Scholar 

  • Berggren R, Berthold F, Sjöhoml E, Lindström M (2001) Fiber strength in relation to molecular mass distribution of hardwood kraft pulp. Nord Pulp Pap Res J 16:333–338. doi:10.3183/NPPRJ-2001-16-04-p333-338

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Chang M, Pound TC, Manley RSTJ (1973) Gel-permeation chromatographic studies of cellulose degradation. I. Treatment with hydrochloric acid. J Pol Sci 11:399–411. doi:10.1002/pol.1973.180110301

    CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. doi:10.1007/s10570-015-0615-1

    Article  CAS  Google Scholar 

  • Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. doi:10.1039/c6gc00687f

    Article  CAS  Google Scholar 

  • Cherhal F, Cousin F, Capron I (2016) Structural description of the interface of pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules 17:496–502. doi:10.1021/acs.biomac.5b01413

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759. doi:10.1021/ma801796u

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Effects of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409. doi:10.1021/la960724h

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. doi:10.1023/A:1009260511939

    Article  CAS  Google Scholar 

  • Dri FL, Hector LG Jr, Moon RJ, Zavarettieri PD (2013) Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions. Cellulose 20:2703–2718. doi:10.1007/s10570-013-0071-8

    Article  CAS  Google Scholar 

  • Elazzouzi-Harfaoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.1021/bm700769p

    Article  Google Scholar 

  • Fan J-S, Li Y-H (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi:10.1016/j.carbpol.2012.01.081

    Article  CAS  Google Scholar 

  • Gestranius M, Stenius P, Kontturi E, Sjöblom J, Tammelin T (2016) Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials. Col Surf A Physicochem Eng Aspects. doi:10.1016/j.colsurfa.2016.04.025

    Google Scholar 

  • Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255. doi:10.1016/j.carbpol.2015.08.068

    Article  CAS  Google Scholar 

  • Gurnagul N, Page DH, Paice MG (1992) The effect of cellulose degradation on the strenth of wood pulp fibres. Nord Pulp Pap Res J 7:152–154. doi:10.3183/NPPRJ-1992-07-03-p152-154

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402. doi:10.1002/cjce.20298

    CAS  Google Scholar 

  • Hu TQ, Hashaikeh R, Berry R (2014) Isolation of a novel, crystalline cellulose material from the spent liquor of cellulose nanocrystals (CNCs). Cellulose 21:3217–3229. doi:10.1007/s10570-014-0350-z

    Article  CAS  Google Scholar 

  • Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295. doi:10.3390/polym4010275

    Article  Google Scholar 

  • Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21:3945–3948. doi:10.1002/adma.200900498

    Article  CAS  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431. doi:10.1007/s10570-010-9484-9

    Article  CAS  Google Scholar 

  • Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137:6124–6127. doi:10.1021/jacs.5b02034

    Article  CAS  Google Scholar 

  • Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The developmetn of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096. doi:10.1021/ar400243m

    Article  CAS  Google Scholar 

  • Kontturi E, Vuorinen T (2009) Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose 16:65–74. doi:10.1007/s10570-008-9235-3

    Article  CAS  Google Scholar 

  • Kontturi E, Meriluoto A, Penttilä PA, Baccile N, Malho J, Potthast A, Rosenau T, Ruokolainen J, Serimaa R, Laine J, Sixta H (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55:14455–14458. doi:10.1002/anie.201606626

    Article  CAS  Google Scholar 

  • Lin N, Géze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889. doi:10.1021/acsami.6b00555

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172. doi:10.1021/acssuschemeng.5b01620

    Article  CAS  Google Scholar 

  • Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113:20599–20605. doi:10.1021/jp906296y

    Article  CAS  Google Scholar 

  • Mao J, Heck B, Reiter G, Laborie M (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)– mediated hydrolysis. Carbohydr Polym 117:443–451. doi:10.1016/j.carbpol.2014.10.001

    Article  CAS  Google Scholar 

  • Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5:57133–57140. doi:10.1039/c5ra06862b

    Article  CAS  Google Scholar 

  • Niinivaara E, Faustini M, Tammelin T, Kontturi E (2015) Water vapor uptake of ultrathin films of biologically derived nanocrystals: quantitative assessment with quartz crystal microbalance and spectroscopic ellipsometry. Langmuir 31:12170–12176. doi:10.1021/acs.langmuir.5b01763

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700. doi:10.1021/bm100214b

    Article  CAS  Google Scholar 

  • Peyre J, Pääkkönen T, Reza M, Kontturi E (2015) Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation. Green Chem 17:808–811. doi:10.1039/c4gc02001d

    Article  CAS  Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650. doi:10.3891/acta.chem.scand.03-0649

    Article  Google Scholar 

  • Rånby BG (1951) III. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi:10.1039/DF9511100158

    Article  Google Scholar 

  • Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. doi:10.1021/am500359f

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. doi:10.1021/bm0497769

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996. doi:10.1021/bm900414t

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of sigle cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.1021/bm301674e

    Article  Google Scholar 

  • Samir ASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685

    Article  CAS  Google Scholar 

  • Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129. doi:10.1016/j.carbpol.2010.07.029

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (cncs). Ind Eng Chem Res 53:11007–11014. doi:10.1021/ie501672m

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944. doi:10.1039/C3TA01150J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Academy of Finland (259500) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Kontturi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salminen, R., Reza, M., Pääkkönen, T. et al. TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield. Cellulose 24, 1657–1667 (2017). https://doi.org/10.1007/s10570-017-1228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1228-7

Keywords

Navigation