Skip to main content
Log in

Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Unique structure-controllable three-dimensional (3D) nanofiber stacks of cellulose acetate (CA) were fabricated successfully by simply increasing relative humidity (RH) during the electrospinning process. It is found that once the RH exceeding 60 %, 3D flocculent nanofiber stacks would grow on the flat plate collector toward the needle tip without using special assisting apparatus or preparing special electrospinning solution. Compared with those obtained at low RH, the as-prepared nanofibers fabricated under high RH condition exhibited similar nanofiber diameter, density and porosity, and more importantly, 3D flocculent structures instead of typical two-dimensional (2D) electrospun non-woven mats, which would contribute to a significant improvement on the hydrophilicity. It is believed that rapid solidification of CA during the jet process and strong charge repulsion among CA nanofibers play important roles in the formation of 3D nanofibrous structure. Furthermore, these 3D flocculent nanofiber scaffolds exhibited better cytocompatibilities with human MG-63 cells than common 2D nanofibrous mats. Thus a facile and effective approach was presented to prepare 3D nanofiber stacks with tunable and reproducible properties for biodegradable scaffold applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  • Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578

    Article  CAS  Google Scholar 

  • De Schoenmaker B, Van der Schueren L, Zugle R, Goethals A, Westbroek P, Kiekens P, De Clerck K (2013) Effect of the relative humidity on the fibre morphology of polyamide 4.6 and polyamide 6.9 nanofibres. J Mater Sci 48(4):1746–1754

    Article  Google Scholar 

  • De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K (2009) The effect of temperature and humidity on electrospinning. J Mater Sci 44(5):1357–1362

    Article  Google Scholar 

  • Fashandi H, Karimi M (2012a) Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer 53(25):5832–5849

    Article  CAS  Google Scholar 

  • Fashandi H, Karimi M (2012b) Characterization of porosity of polystyrene fibers electrospun at humid atmosphere. Thermochim Acta 547:38–46

    Article  CAS  Google Scholar 

  • Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4):759–762

    Article  CAS  Google Scholar 

  • Hardick O, Stevens B, Bracewell DG (2011) Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. J Mater Sci 46(11):3890–3898

    Article  CAS  Google Scholar 

  • Hu H, Zhang X, He Y, Guo ZS, Zhang J, Song Y (2013) Combined effect of relative humidity and temperature on dynamic viscoelastic properties and glass transition of poly (vinyl alcohol). J Appl Polym Sci 130(5):3161–3167

    Article  CAS  Google Scholar 

  • Huang L, Bui NN, Manickam SS, McCutcheon JR (2011) Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym Sci Part B Polym Phys 49(24):1734–1744

    Article  CAS  Google Scholar 

  • Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31(4):421–437

    Article  CAS  Google Scholar 

  • Liang T, Parhizkar M, Edirisinghe M, Mahalingam S (2014) Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning. Eur Polym J 61:72–82

    Article  CAS  Google Scholar 

  • Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Lu P, Xia Y (2013) Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 29(23):7070–7078

    Article  CAS  Google Scholar 

  • Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Shi X (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427

    Article  CAS  Google Scholar 

  • Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci 319(1):23–28

    Article  CAS  Google Scholar 

  • Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265(1):115–123

    Article  CAS  Google Scholar 

  • Müller CM, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydr Polym 77(2):293–299

    Article  Google Scholar 

  • Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng C Methods 19(10):810–819

    Article  CAS  Google Scholar 

  • Nista SVG, Peres L, D’Ávila MA, Schmidt FL, Mei I, Lucia H (2012) Nanostructured membranes based on cellulose acetate obtained by electrospinning, part 1: study of the best solvents and conditions by design of experiments. J Appl Polym Sci 126(S1):E70–E78

    Article  CAS  Google Scholar 

  • Rodríguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689

    Article  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys 42(1):5–11

    Article  CAS  Google Scholar 

  • Sun B, Long YZ, Yu F, Li MM, Zhang HD, Lia WJ, Xu TX (2012) Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale 4(6):2134–2137

    Article  CAS  Google Scholar 

  • Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890

    Article  CAS  Google Scholar 

  • Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575

    Article  CAS  Google Scholar 

  • Wu S, Qin X, Li M (2014) The structure and properties of cellulose acetate materials: a comparative study on electrospun membranes and casted films. J Ind Text 44(1):85–98

    Article  CAS  Google Scholar 

  • Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W, Ramakrishna S (2012) A note on the 3D structural design of electrospun nanofibers. J Eng Fabr Fibers (JEFF) 7(2):17–23

    CAS  Google Scholar 

  • Yu DG, Yu JH, Chen L, Williams GR, Wang X (2012) Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym 90(2):1016–1023

    Article  CAS  Google Scholar 

  • Yu HY, Qin ZY, Yan CF, Yao JM (2014) Green nanocomposites based on functionalized cellulose nanocrystals: a study on the relationship between interfacial interaction and property enhancement. ACS Sustain Chem Eng 2(4):875–886

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT1221) and Key Basic Research Project of Science and Technology of Shanghai (15Q10622). Dr. Miao Cheng kindly acknowledges the support from the Innovation Research Funds for the Doctoral candidate of Donghua University (15D310606). Dr. Hou-Yong Yu would like to thank the support from the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK1428).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyi Qin or Houyong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Qin, Z., Hu, S. et al. Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition. Cellulose 24, 219–229 (2017). https://doi.org/10.1007/s10570-016-1099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1099-3

Keywords

Navigation