Skip to main content
Log in

The influences of enzymatic processing on physico-chemical and pigment dyeing characteristics of cotton fabrics

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

First, a crude cellulase was used to treat cotton fabrics to investigate its influences on the physicochemical properties of cotton. The FTIR and XRD analyses both confirmed the enzymatic treatment could increase the crystallinity of cotton, especially at a higher cellulase dosage. Once treated, the number of dissociable groups (–COOH) in cotton decreased, while that of the reducing groups (–CHO) increased. Second, copper phthalocyanine (CuPc) was selected to prepare an anionic nanoscale pigment dispersion to detect its dyeability on different cotton samples. It was concluded that the enzymatic hydrolysis itself had no significant impacts on the pigment dyeing performance. However, cellulase protein still stayed on the cotton surface after treatment and produced an enhancement effect on the pigment uptake due to strong hydrophobic interactions between them. This could be verified by K/S measurement and SEM observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczyk Z, Nattich M, Wasilewska M, Sadowska M (2011) Deposition of colloid particles on protein layers: fibrinogen on mica. J Colloid Interface Sci 356:454–464

    Article  CAS  Google Scholar 

  • Adeel S, Usman M, Haider W, Saeed M, Muneer M, Ali M (2015) Dyeing of gamma irradiated cotton using Direct Yellow 12 and Direct Yellow 27: improvement in colour strength and fastness properties. Cellulose 22:2095–2105

    Article  CAS  Google Scholar 

  • Akerholm M, Hinterstoisser B, Salmen L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578

    Article  CAS  Google Scholar 

  • Andreaus J, Azevedo H, Cavaco-Paulo A (1999) Effects of temperature on the cellulose binding ability of cellulase enzymes. J Mol Catal B Enzym 7:233–239

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317

    Article  CAS  Google Scholar 

  • Cavaco-paulo A, Almeida L, Bishop D (1996) Effects of agitation and endoglucanase pretreatment on the hydrolysis of cotton fabrics by a total cellulase. Text Res J 5:287–294

    Article  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • Cortez JM, Ellis J, Bishop DP (2002) Using cellulases to improve the dimensional stability of cellulosic fabrics. Text Res J 72:673–680

    Article  CAS  Google Scholar 

  • Csiszar E, Urbanszki K, Szakacs G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072

    Article  CAS  Google Scholar 

  • Dong J, Chen S, Corti DS, Franses EI, Zhao Y, Ng HT, Hanson E (2011) Effect of Triton X-100 on the stability of aqueous dispersions of copper phthalocyanine pigment nanoparticles. J Colloid Interface Sci 362:33–41

    Article  CAS  Google Scholar 

  • Dourado F, Mota M, Pala H, Gama FM (1999) Effect of cellulase adsorption on he surface and interfacial properties of cellulose. Cellulose 6:265–282

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of celllose I materials. J Appl Crystallogr 44:184–192

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gulrajani ML, Dayal A, Chakraborty M (1998) Kawabata evaluation of enzyme treated cotton knitted fabrics. Indian J Fibre Text 23:160–164

    CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP, Berlin AG, Markov AV, Ankudimova NV (2000) Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. Enzyme Microb Technol 27:664–671

    Article  CAS  Google Scholar 

  • Hao L, Cai Y, Fang K (2009) Dyeing of lyocell fabrics with pigment dispersion systems. J Disper Sci Technol 30:332–335

    Article  CAS  Google Scholar 

  • Hao L, Cai Y, Wang R (2011) Preparation of ultrafine pigment dispersion and investigation of its adsorption performance on cationized flax substrate. Adsorpt Sci Technol 29:875–885

    Article  CAS  Google Scholar 

  • Hao L, Wang R, Liu J, Cai Y, Liu R (2012a) Investigating the adsorption performance of nanoscale pigment on cationized cotton substrate. Powder Technol 222:176–181

    Article  CAS  Google Scholar 

  • Hao L, Wang R, Liu J, Liu R (2012b) The adsorptive and hydrolytic performance of cellulase on cationised cotton. Carbohydr Polym 89:171–176

    Article  CAS  Google Scholar 

  • Hao L, Wang R, Liu J, Liu R (2012c) Ultrasound-assisted adsorption of anionic nanoscale pigment on cationised cotton fabrics. Carbohydr Polym 90:1420–1427

    Article  CAS  Google Scholar 

  • Hao L et al (2014) Utilizing cellulase as a hydrogen peroxide stabilizer to combine the biopolishing and bleaching procedures of cotton cellulose in one bath. Cellulose 21:777–789

    Article  CAS  Google Scholar 

  • Hashem M, El-Bisi M, Sharaf S, Refaie R (2010) Pre-cationization of cotton fabrics: an effective alternative tool for activation of hydrogen peroxide bleaching process. Carbohydr Polym 79:533–540

    Article  CAS  Google Scholar 

  • Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196

    Article  CAS  Google Scholar 

  • Kang SY, Epps HH (2009) Effect of scouring and enzyme treatment on moisture regain percentage of naturally colored cottons. J Text I 100:598–606

    Article  CAS  Google Scholar 

  • Khan AA, Iqbal N, Adeel S, Azeem M, Batool F, Bhatti IA (2014) Extraction of natural dye from red calico leaves: gamma ray assisted improvements in colour strength and fastness. Dyes Pigments 103:50–54

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Lenting HBM, Warmoeskerken MMCG (2001) Guidelines to come to minimized tensile strengh losss upon cellulase application. J Biotechnol 89:227–232

    Article  CAS  Google Scholar 

  • Lewin M, Ettinger A (1969) Oxidation of cellulose by hydrogen peroxide. Cell Chem Technol 3:9–20

    CAS  Google Scholar 

  • Li Y, Hardin IR (1997) Enzymatic scouring of cotton: effects on structure and properties. Text Chem Color 8:71–76

    Google Scholar 

  • Lv J, Zhou X (1999) Relationship between cellulase treatment and dyeing properties of cotton fabrics. J China Text Univ 16:32–34

    Google Scholar 

  • Mori R, Haga T, Takagishi T (1996) Reactive dye dyeability of cellulose fibers with cellulase treatment. J Appl Polym Sci 59:1263–1269

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relations of certain infrared bands to cellulose crystallinity and crystal lattic type. Part I. Spectra of lattice types I, II, III and amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nithya E, Radhai R, Rajendran R, Shalini S, Rajendran V, Jayakumar S (2011) Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr Polym 83:1652–1658

    Article  CAS  Google Scholar 

  • Ogeda TL, Silva IB, Fidale LC, Seoud OAE, Petri DFS (2012) Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. J Biotechnol 157:246–252

    Article  CAS  Google Scholar 

  • Pandiyaraj KN, Selvarajan V (2008) Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 199:130–139

    Article  CAS  Google Scholar 

  • Paralikar KM, Bhatawdekar SP (1984) Hydrolysis of cotton fibres by cellulase enzymes. J Appl Polym Sci 29:2573–2580

    Article  CAS  Google Scholar 

  • Park S, Venditti RA, Abrecht DG, Jameel H, Pawlak JJ, Lee JM (2007) Surface and pore structure modificatellulose fibers through cellulase treatment. J Appl Polym Sci 103:3833–3839

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Paulo AC, Almeida L (1996) Effect of agitation and endoglucanase pretreatment on the hydrolysis of cotton fabrics by a total cellulase. Text Res J 66:287–294

    Article  Google Scholar 

  • Rousselle MA, Howley PS (1998) Molecular weight of cotton cellulose: effect of treatment with a total cellulase. Text Res J 68:606–610

    Article  CAS  Google Scholar 

  • Saravanan D, Vasanthi NS, Ramachandran T (2009) A review on influential behaviour of biopolishing on dyeability and certain physico-mechanical properties of cotton fabrics. Carbohydr Polym 76:1–7

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ Jr, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Spinelli HJ (1998) Polymeric dispersants in ink jet technology. Adv Mater 10:1215–1218

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Tsatsaroni E, Liakopoulou-Kyriakides M (1995) Effect of enzymatic treatment on the dyeing of cotton and wool fibres with natural dyes. Dyes Pigments 29:203–209

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Sychrotron-radiaated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wang N, Zha A, Wang J (2008) Study on the wicking property of polyester filament yarns. Fiber Polym 9:97–100

    Article  Google Scholar 

  • Xie K, Hu C, Zhang X (2012) Low temperature bleaching and dyeing properties of modified cellulose fabrics with triazine derivative. Carbohydr Polym 87:1756–1762

    Article  CAS  Google Scholar 

  • Yamade M, Amano Y, Horikawa E, Nozaki K, Kanda T (2005) Mode of action of cellulase on dyed cotton with a reactive dye. Biosci Biotech Bioch 69:45–50

    Article  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Zemljic LF (2008) Carboxyl groups in pre-treated regenerated cellulose fibres. Cellulose 15:681–690

    Article  CAS  Google Scholar 

  • Zhang M et al (2011) Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. ACS Appl Mater Inter 3:2573–2578

    Article  CAS  Google Scholar 

  • Zolriasatein AA, Yazdanshenas ME (2014) Changes in composition, appearence, physical, and dyeing properties of jute yarn after bio-pretreatment with laccase, xylanase, cellulase, and pectinase enzymes. J Text I 105:609–619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21303092), Science and Technology Plan of Qingdao (13-1-4-247-jch), Shandong Provincial Post-doctoral Foundation (127010) and Shandong Provincial Natural Science Foundation (ZR2010EQ 034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longyun Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Wang, R., Wang, L. et al. The influences of enzymatic processing on physico-chemical and pigment dyeing characteristics of cotton fabrics. Cellulose 23, 929–940 (2016). https://doi.org/10.1007/s10570-015-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0804-y

Keywords

Navigation