Skip to main content
Log in

Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Poly vinylidene fluoride:poly methyl methacrylate:cellulose acetate (CA) at ratios of 100:0:0, 90:10:0, 90:5:5 and 90:0:10 respectively, were successfully electrospun. These membranes were mixed to form a 12 wt% solution prepared with volume ratio 7:3 of DMAc:acetone solvents. These membranes were then analyzed using differential scanning calorimetry, scanning electron microscopy, FTIR, WAXD, pore size, porosity% and electrolyte uptake (EU)%. It was observed that the best absorption results were obtained in the presence of CA. The electrospun membrane at ratio of 90:0:10 was observed with the highest porosity of 99.1 % and EU at 323 %. It also had a 43.6 % crystallinity and a 162 °C melting temperature. It was then concluded that addition of CA improved the separator properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Appetecchi GB (1995) Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes. Electrochim Acta 40(8):991–997

    Article  CAS  Google Scholar 

  • Arora P, Zhengming Z (2004) Battery separators. Chem Rev 104(10):419–4462. doi:10.1021/cr020738u

    Article  Google Scholar 

  • Bauduin G, Boutevin B, Gramain P, Malinova A (1999) Poly(vinylidene uoride)/poly(vinyl alcohol-co-vinyl acetate) blends: 1. Compatibility Study by differential scanning calorimetry (DSC). Eur Polym J 35:285–292

    Article  CAS  Google Scholar 

  • Cui W-W, Tang D-Y, Gong Z-L (2013a) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213. doi:10.1016/j.jpowsour.2012.09.049

    Article  CAS  Google Scholar 

  • Cui Z, Drioli E, Lee YM (2013b) Recent progress in fluoropolymers for membranes. Prog Polym Sci. doi:10.1016/j.progpolymsci.2013.07.008

    Google Scholar 

  • Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Di W (2009) The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries. J Membr Sci 329(1–2):56–59. doi:10.1016/j.memsci.2008.12.024

    Article  CAS  Google Scholar 

  • Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69. doi:10.1007/BF00625960

    Article  CAS  Google Scholar 

  • Gozdz AS, Plitz I, Pasquier Du A, Red Bank (2002) Use of electrode-bonded paper separators in non-aqueous slectric double-layer capacitors and Li-ion batteries. In: Proceedings of the 201st meeting of the Electrochemical Society, 12–17

  • Iljima T, Toyogushi Y, Eda N (1985) Quasi-solid organic electrolytes gelatinized with poly-methyl methacrylate and their applications for lithium batteries. Electrochem Soc Jpn 53(8):619–623

    Google Scholar 

  • Jabbour L, Bongiovanni R, Beneventi D (2013a) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545. doi:10.1007/s10570-013-9973-8

    Article  CAS  Google Scholar 

  • Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D (2013b) Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Compos Sci Technol 87:232–239. doi:10.1016/j.compscitech.2013.07.029

    Article  CAS  Google Scholar 

  • Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc 152(2):A295. doi:10.1149/1.1839531

    Article  CAS  Google Scholar 

  • Kim Y-J, Ahn CH, Lee MB, Choi M-S (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127(1–2):137–142. doi:10.1016/j.matchemphys.2011.01.046

    Article  CAS  Google Scholar 

  • Kritzer P (2006) Nonwoven support material for improved separators in Li–polymer batteries. J Power Sources 161(2):1335–1340. doi:10.1016/j.jpowsour.2006.04.142

    Article  CAS  Google Scholar 

  • Lalia BS, Samad YA, Hashaikeh R (2012) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17(3):575–581. doi:10.1007/s10008-012-1894-1

    Article  Google Scholar 

  • Lee JM, Nguyen DQ, Lee SB, Kim H, Ahn BS, Lee H, Kim HS (2010) Cellulose triacetate-based polymer gel electrolytes. J Appl Polym Sci 115:32–36. doi:10.1002/app.29398

    Article  Google Scholar 

  • Li X, Cao Q, Wang X, Jiang S, Deng H, Wu N (2011) Preparation of poly (vinylidene fluoride)/poly (methyl methacrylate) membranes by novel electrospinning system for lithium ion batteries. J Appl Polym Sci 122:2616–2620. doi:10.1002/app.34401

    Article  CAS  Google Scholar 

  • Liu F, Awanis Hashim N, Yutie Liu MR, Abed Moghareh, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1–2):1–27. doi:10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  • Ma T, Cui Z, Wu Ying, Qin S, Wang H, Yan F, Han N, Li J (2013) Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties. J Membr Sci 444:213–222. doi:10.1016/j.memsci.2013.05.028

    Article  CAS  Google Scholar 

  • Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964. doi:10.1016/j.polymer.2006.05.069

    Article  Google Scholar 

  • Mu C, Su Y, Sun M, Chen W, Jiang Z (2010) Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. J Membr Sci 350(1–2):293–300. doi:10.1016/j.memsci.2010.01.004

    Article  CAS  Google Scholar 

  • Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196(10):4436–4444. doi:10.1016/j.jpowsour.2011.01.032

    Article  CAS  Google Scholar 

  • Ren Z, Liu Y, Sun K, Zhou X, Zhang N (2009) A microporous gel electrolyte based on poly(vinylidene fluoride-Co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta 54(6):1888–1892. doi:10.1016/j.electacta.2008.10.011

    Article  CAS  Google Scholar 

  • Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J-M, Bouchet R, Lascaud S (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51(25):5334–5340. doi:10.1016/j.electacta.2006.02.004

    Article  CAS  Google Scholar 

  • Samad YA, Asghar A, Hashaikeh R (2013) Electrospun cellulose/PEO fiber mats as a solid polymer electrolytes for Li ion batteries. Renew Energy 56:90–95. doi:10.1016/j.renene.2012.09.015

    Article  CAS  Google Scholar 

  • Schneider S, Drujon X, Wittmann JC, Lotz B (2001) Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends. Polymer 42(21):8799–8806. doi:10.1016/S0032-3861(01)00349-4

    Article  CAS  Google Scholar 

  • Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569. doi:10.1002/app.21481

    Article  CAS  Google Scholar 

  • Takemura D, Aihara S, Hamano K, Kise M, Nishimura T, Urushibata H, Yoshiyasu H (2005) A powder particle size effect on ceramic powder based separator for lithium rechargeable battery. J Power Sources 146(1–2):779–783. doi:10.1016/j.jpowsour.2005.03.159

    Article  CAS  Google Scholar 

  • Tomura H, Inoue T (1992) Light scattering analysis of upper critical solution temperature behavior in a poly (vinylidene fluoride)/poly (methyl methacrylate) blend. Macromolecules 25:1611–1614

    Article  CAS  Google Scholar 

  • Tseng H-H, Zhuang G-L, Su Y-C (2012) The effect of blending ratio on the compatibility, morphology, thermal behavior and pure water permeation of asymmetric CAP/PVDF membranes. Desalination 284:269–278. doi:10.1016/j.desal.2011.09.011

    Article  CAS  Google Scholar 

  • Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364. doi:10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  • Zhang S, Xu K, Jow T (2005) An inorganic composite membrane as the separator of Li-ion batteries. J Power Sources 140(2):361–364. doi:10.1016/j.jpowsour.2004.07.034

    Article  CAS  Google Scholar 

  • Zhang LC, Sun X, Hu Z, Yuan CC, Chen CH (2012) Rice paper as a separator membrane in lithium-ion batteries. J Power Sources 204:149–154. doi:10.1016/j.jpowsour.2011.12.028

    Article  CAS  Google Scholar 

  • Zheng J, He A, Li J, Han CC (2007) Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28(22):2159–2162. doi:10.1002/marc.200700544

    Article  CAS  Google Scholar 

  • Zhou YF, Xie S, Ge XW, Chen CH, Amine K (2004) Preparation of rechargeable lithium batteries with poly (methyl methacrylate) based gel polymer electrolyte by in situ c-ray irradiation-induced polymerization. J Appl Electrochem 34:1119–1125

    Article  CAS  Google Scholar 

  • Zhou W, He J, Cui S, Gao W (2011) Studies of electrospun cellulose acetate nanofibrous membranes. Open Mater Sci J 5:51–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tusiimire Yvonne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvonne, T., Zhang, C., Zhang, C. et al. Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21, 2811–2818 (2014). https://doi.org/10.1007/s10570-014-0296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0296-1

Keywords

Navigation