Skip to main content
Log in

Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose offers new technological solutions for the development of paper products. Here, composites of nanofibrillated cellulose (NFC) and Ag nanoparticles (NP) were prepared for the first time via the electrostatic assembly of Ag NP (aqueous colloids) onto NFC. Distinct polyelectrolytes have been investigated as macromolecular linkers in order to evaluate their effects on the building-up of Ag modified NFC and also on the final properties of the NFC/Ag composite materials. The NFC/Ag nanocomposites were first investigated for their antibacterial properties towards S. aureus and K. pneumoniae microorganisms as compared to NFC modified by polyelectrolytes linkers without Ag. Subsequently, the antibacterial NFC/Ag nanocomposites were used as fillers in starch based coating formulations for Eucalyptus globulus-based paper sheets. The potential of this approach to produce antimicrobial paper products will be discussed on the basis of complementary optical, air barrier and mechanical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 41(4):1589–1596

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, London

    Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998. doi:10.1021/Es103302t

    Article  CAS  Google Scholar 

  • Diez I, Eronen P, Osterberg M, Linder MB, Ikkala O, Ras RHA (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11(9):1185–1191. doi:10.1002/mabi.201100099

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82. doi:10.1007/s10570-010-9455-1

    Article  CAS  Google Scholar 

  • Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81(2):394–401

    Google Scholar 

  • Friedrich CL, Moyles D, Beveridge TJ, Hancock REW (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44(8):2086–2092. doi:10.1128/AAC.44.8.2086-2092.2000

    Article  CAS  Google Scholar 

  • Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061–1083. doi:10.1039/C0gc00789g

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PAAP, Pinto RJB, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69(7–8):1051–1056

    Article  CAS  Google Scholar 

  • Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2):720–726. doi:10.1021/La103401z

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43(8):3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia AL, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980

    Google Scholar 

  • Karlsson JO, Henriksson A, Michalek J, Gatenholm P (2000) Control of cellulose-supported hydrogel microstructures by three-dimensional graft polymerization of glycol methacrylates. Polymer 41(4):1551–1559. doi:10.1016/s0032-3861(99)00277-3

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem-Int Edit 44(22):3358–3393. doi:10.1002/anie.200460587

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edit 50(24):5438–5466. doi:10.1002/anie.201001273

  • Mak WC, Cheung KY, Trau D (2008) Influence of different polyelectrolytes on layer-by-layer microcapsule properties: Encapsulation efficiency and colloidal and temperature stability. Chem Mater 20(17):5475–5484. doi:10.1021/Cm702254h

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51. doi:10.1016/j.carbpol.2007.07.025

    Google Scholar 

  • Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8(4):1246–1254. doi:10.1021/Bm060721b

    Article  CAS  Google Scholar 

  • Melo LD, Mamizuka EM, Carmona-Ribeiro AM (2010) Antimicrobial particles from cationic lipid and polyelectrolytes. Langmuir 26(14):12300–12306. doi:10.1021/La101500s

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/Bm061215p

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques PAAP, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312(2):506–512

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289. doi:10.1016/j.actbio.2009.02.003

    Article  CAS  Google Scholar 

  • Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S (2011) Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 22(13):135101. doi:10.1088/0957-4484/22/13/135101

    Article  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi:10.1021/Bm034130m

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi:10.1021/Bm0703970

    Article  CAS  Google Scholar 

  • Silva AR, Unali G (2011) Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves. Nanotechnology 22(31):315605. doi:10.1088/0957-4484/22/31/315605

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18(4):975–985. doi:10.1007/s10570-011-9544-9

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. doi:10.1016/j.jcis.2004.02.012

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloid Surf B 69(2):164–168. doi:10.1016/j.colsurfb.2008.11.004

    Article  CAS  Google Scholar 

  • Tome LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13(2):419–427. doi:10.1039/c0gc00545b

    Article  CAS  Google Scholar 

  • Yano H, Nakagaito AN (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80(1):155–159. doi:10.1007/s00339-003-2225-2

  • Yuan J, Geng J, Xing Z, Shen J, Kang I-K, Byun H (2010) Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J Appl Polym Sci 116(2):668–672. doi:10.1002/app.31632

    CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi:10.1002/adem.200400097

    Article  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093. doi:10.1016/j.carbpol.2009.10.045

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 228802. The authors thank the Centre Technique du Papier (France) for supplying the NFC used in this work. We thank RAIZ- Centro de Investigação da Floresta e do Papel (Portugal) for all the facilities provided in the paper coating experiments. Ricardo J.B. Pinto is grateful to FCT for a PhD grant (SFRH/BD/45364/2008). Susana C.M. Fernandes thanks FCT for funding her Postdoctoral Research Grant (SFRH/BPD/70119/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natércia C. T. Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, N.C.T., Freire, C.S.R., Pinto, R.J.B. et al. Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19, 1425–1436 (2012). https://doi.org/10.1007/s10570-012-9713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9713-5

Keywords

Navigation