Skip to main content
Log in

Analytical and numerical manifolds in a symplectic 4-D map

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study analytically the orbits along the asymptotic manifolds from a complex unstable periodic orbit in a symplectic 4-D Froeschlé map. The orbits are given as convergent series. We compare the analytic results by truncating the series at various orders with the corresponding numerical results and we find agreement along a more extended length, as the order of truncation increases. The agreement is improved when the parameters approach those of the stability domain. Along the manifolds no terms with small divisors appear in the series. The same result is found if we use a parametrization method along the asymptotic curves. In the case of orbits starting close to the manifolds small divisors appear, but the orbits remain close to the manifolds for an extended period of time. If the parameters of the map are close to the stable domain the orbits recede and approach the origin several times and remain confined in a certain volume around the origin for a long time before escaping to large distances. For special sets of parameters we see resonance phenomena and the orbits take particular forms near every resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The original map (Froeschlé and Gonczi 1980) has \(L_1=L_2\).

References

  • Bazzani, A.: Normal forms for sympletic maps of \(R^{2n}\). Celest. Mech. 42, 107 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003 (1969)

    Article  ADS  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds III: overview and applications. J. Differ. Equ. 218(2), 444 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen, Q., Mackay, R.S., Meiss, J.D.: Cantori for symplectic maps. J. Phys. A. 23, L1093 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cherry, T.M.: On the solution of hamiltonian systems of differential equations in the neighborhood of a singular point. Proc. Lond. Math. Soc. 27, 151 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  • Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Contopoulos, G., Magnenat, P.: Simple three-dimensional periodic orbits in a galactic-type potential. Celest. Mech. 37, 387 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Contopoulos, G., Harsoula, M.: Convergence regions of the Moser normal forms and the structure of chaos. J. Phys. A. 48, 335101 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • de la Llave, R.: Invariant manifolds associated to nonresonant spectral subspaces. J. Stat. Phys. 87, 211 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Efthymiopoulos, C., Giorgilli, A., Contopoulos, G.: Nonconvergence of formal integrals II: improved estimates for the optimal order of truncation. J. Phys. A 37, 10831 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Efthymiopoulos, C., Contopoulos, G., Katsanikas, M.: Analytical invariant manifolds near unstable points and the structure of chaos. Celest. Mech. Dyn. Astron. 119, 331 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C.: On the number of isolating integrals in systems with three degrees of freedom. Astrophys. Space Sci. 14, 110 (1971)

    Article  ADS  Google Scholar 

  • Froeschlé, C., Gonczi, R.: Lyapunov characteristic numbers and Kolmogorov entropy of a four-dimensional mapping. Nuovo Cim. B 1, 59 (1980)

    Article  ADS  Google Scholar 

  • Giorgilli, A.: Unstable equilibria of Hamiltonian systems. Discrete Contin. Dyn. Syst. 7, 855 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Guzzo, M.: A direct proof of the Nekhoroshev theorem for nearly integrable symplectic maps. Ann. H. Poincaré 5, 1013 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Harsoula, M., Contopoulos, G., Efthymiopoulos, C.: Analytical description of the structure of chaos. J. Phys. A 48, 135102 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hadjidemetriou, J.D.: The stability of resonant orbits in planetary systems. In: Ferraz-Mello, S., Sessin, W. (eds.) Resonances in the motion of planets, satelites and asteroids. Satelites and asteroids, pp. 1–18 (1985)

  • Katsanikas, M., Patsis, P.A., Contopoulos, G.: The structure and evolution of confined tori near a Hamiltonian Hopf bifurcation. Int. J. Bifurc. Chaos 21, 2321 (2011)

    Article  MATH  Google Scholar 

  • Lhotka, Ch., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at \(L_{4}\) or \(L_{5}\) in the elliptic-restricted three-body problem—application to Trojan asteroids. MNRAS 384, 1165 (2008)

    Article  ADS  Google Scholar 

  • Martinet, L., de Zeeuw, T.: Orbital stability in rotating triaxial stellar systems. Astron. Astrophys. 206, 269 (1988)

    ADS  Google Scholar 

  • Moser, J.: The analytic invariants of an area-preserving mapping near a hyperbolic fixed point. Pure Appl. Math. 9, 673 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Moser, J.: On the generalization of a theorem of A. Lyapunov. Pure Appl. Math. 11, 257 (1958)

    Article  MATH  Google Scholar 

  • Ozorio de Almeida, A.M., Vieira, W.M.: Extended convergence of normal forms around unstable equilibria. Phys. Lett. A 227, 298 (1997)

  • Rajnai, R., Nagy, I., Érdi, B.: Frequencies and resonances around L4 in the elliptic restricted three-body problem. MNRAS 443(3), 1988 (2014)

    Article  ADS  Google Scholar 

  • Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  • Vieira, W.M., Ozorio de Almeida, A.M.: Study of chaos in hamiltonian systems via convergent normal forms. Phys. D 90, 9 (1996)

  • Zachilas, L., Katsanikas, M., Patsis, P.A.: The structure of phase space close to fixed points in a 4D symplectic map. Int. J. Bifurc. Chaos 23(07), 1330023 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Research Committee of the Academy of Athens through the Project 200/815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Delis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delis, N., Contopoulos, G. Analytical and numerical manifolds in a symplectic 4-D map. Celest Mech Dyn Astr 126, 313–337 (2016). https://doi.org/10.1007/s10569-016-9697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9697-9

Keywords

Navigation