Skip to main content
Log in

Efficient Solvent Free Knoevenagel Condensation Over Vanadium Containing Heteropolyacid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Various V/P mole ratios of vanadium substituted Keggin-type phosphomolybdic acids were synthesized by the hydrothermal method. These materials were characterized using several physico-chemical techniques such as X-ray diffraction, FT-IR, N2-sorption, Raman spectroscopy, 31P MAS NMR, SEM and NH3-TPD. FT-IR, Raman spectroscopy and 31P NMR results confirm the formation of the primary structure of the Keggin ion and its crystalline nature is shown clearly by XRD. NH3-TPD results reveal that the acidity of the materials systematically decreases with increasing vanadium content. The Knoevenagel reaction carried out over vanadium substituted phosphomolybdic acid with various V/P mole ratios indicate that the higher V/P mole ratio exhibits better catalytic performance under solvent free conditions. The catalytic properties correlate with the structural properties and the acidity of the materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trost BM (1991) Comprehensive organic synthesis. Elsevier, Oxford, p 133

    Google Scholar 

  2. Knoevenagel L (1898) Ber 31:258

    Google Scholar 

  3. Enders D, Muller S, Demir AS (1988) Tetrahedron Lett 29:6437

    Article  CAS  Google Scholar 

  4. Reeves RL, Patai S (1996) The chemistry of carbonyl compounds. Interscience Publishers, New York 567

    Google Scholar 

  5. Jones G (1967) Org React 15:204

    CAS  Google Scholar 

  6. Attanasi O, Fillippone P, Mei A (1983) Syn Commun 13:1203

    Article  CAS  Google Scholar 

  7. Shanthan Rao P, Venkatratnam RV (1991) Tetrahedron Lett 32:5821

    Article  Google Scholar 

  8. Bao W, Zhang Y, Wang J (1996) Syn Commun 26:3025

    Article  CAS  Google Scholar 

  9. Saravanamurugan S (2006) Appl Catal A Gen 298:8

    Article  CAS  Google Scholar 

  10. Boullet FT, Focucad A (1982) Tetrahedron Lett 23:4927

    Article  Google Scholar 

  11. Macquarrie DJ, Clark JH, Lambert A, Gmode JE, Priest A (1997) React Funct Polym 35:153

    Article  CAS  Google Scholar 

  12. Brunel D (1993) Micropor Mesopor Mater 27:329

    Article  Google Scholar 

  13. Hein RW, Astle MJ, Shelton JR (1961) J Org Chem 26:4874

    Article  CAS  Google Scholar 

  14. Moison H, Boullet FT, Focaud A (1987) Tetrahedron 43:537

    Article  CAS  Google Scholar 

  15. Bigi F, Chesini L, Maggi R, Sartori G (1999) J Org Chem 64:1033

    Article  CAS  Google Scholar 

  16. Kantam ML, Choudary BM, Reddy CV, Rao KK, Figueras F (1998) Chem Commun 1033

  17. Joshi UD, Joshi PN, Tamhankar SS, Joshi VV, Rode CV, Shiralkar VP (2003) Appl Catal A Gen 239:209

    Article  CAS  Google Scholar 

  18. Climent MJ, Corma A, Forens V, Frau A, Lopez RG, Iborra S, Primo J (1996) J Catal 163:392

    Article  CAS  Google Scholar 

  19. Corma A, Fornes V, Aranda RMM, Garcia H, Primo J (1990) Appl Catal 59:237

    Article  CAS  Google Scholar 

  20. Corma A, Aranda RMM, Sanchez F, Guinst M, Barrault J, Bouchoule C, Duprez D, Maurel R, Montassier C (1991) Stud Surf Sci Catal 62:503

    Article  Google Scholar 

  21. Corma A, Aranda RMM (1993) Appl Catal A 105:271

    Article  CAS  Google Scholar 

  22. Oskooie HA, Heravi MM, Derikvand F, Khorasani M (2006) Syn Commu 36:2819

    Article  CAS  Google Scholar 

  23. Bhunia S, Saha D, Koner S (2011) Langmuir 27:15322

    Article  CAS  Google Scholar 

  24. Metzger JO (1998) Ang Chem Inter Ed 37:2975

    Article  CAS  Google Scholar 

  25. Tanaka K, Toda F (2000) Chem Rev 100:1025

    Article  CAS  Google Scholar 

  26. Pillai MK, Singh S, Jonnalagadda SB (2011) Kinet Catal 52:536

    Article  CAS  Google Scholar 

  27. Fumin Z, Maiping G, Hanqing G, Jun W (2007) Front Chem Eng China 1:296

    Article  Google Scholar 

  28. Sen R, Bera R, Ashis B, Gutlich P, Ghosh S, Mukherjee AK, Koner S (2008) Langmuir 24:5970

    Article  CAS  Google Scholar 

  29. Ilkenhans T, Herzag B, Braun T, Schlogl R (1995) J Catal 153:275

    Article  CAS  Google Scholar 

  30. Zhang J, Tang Y, Li G, Hu C (2005) Appl Catal A Gen 278:251

    Article  CAS  Google Scholar 

  31. Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) Appl Catal A Gen 319:14

    Article  CAS  Google Scholar 

  32. Raj NKK, Deshpande SS, Ingle RH, Raja T, Manikandan P (2004) Catal Lett 24:1001

    Google Scholar 

  33. Yue ZY, Bao B, Liu RL, Xi HS, Yong H (2006) Chin J Chem 24:1001

    Article  Google Scholar 

  34. Tang Y, Zhang J (2006) J Serb Chem Soc 71:111

    Article  CAS  Google Scholar 

  35. Ogiwara Y, Takahashi K, Kitazawa T, Sakai N (2015) J Org Chem 80:3101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B Viswanadham thanks to the University of KwaZulu-Natal for the award of the AES Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaga Viswanadham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanadham, B., Jhansi, P., Chary, K.V.R. et al. Efficient Solvent Free Knoevenagel Condensation Over Vanadium Containing Heteropolyacid Catalysts. Catal Lett 146, 364–372 (2016). https://doi.org/10.1007/s10562-015-1646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1646-9

Keywords

Navigation