Skip to main content
Log in

Highly Selective Mono-hydrogenation of Dicyclopentadiene with Pd-nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, we present a new protocol to synthesize dihydrodicyclopentadienes (DHDCP), via mono hydrogenation of dicyclopentadiene. With the use of Pd-nanoparticles as catalysts the products are formed highly selective under mild conditions. The ratio between the DHDCP and the tetrahydrodicyclopentadiene (THDCP) can be shifted by variation of the hydrogen pressure from 7:1 to 1:8, with high conversions of over 85 %. The product DHDCP is an essential building block in co-polymerizations. Also we show an easy recycling concept for the nanocatalyst by phase separation. With simple filtration the solid products DHDCP and THDCP can be isolated and the liquid catalyst phase can directly be reused. Over all recycling runs a steady high conversion of about 75 % was observed.

Graphical Abstract

Palladium nanoparticles in solution are an efficient catalyst for the selective monohydrogenation of dicyclopentadiene to the two dihydrodicyclopentadienes. High selectivities up to 95 % could be obtained after one hour under mild reaction conditions of 60 °C and 5 bar hydrogen pressure. Besides we could show an easy catalyst recycling concept by the liquid–solid two-phase technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hönicke D, Födisch R, Claus P, Olson M (2005) Cyclopentadiene and Cyclopentene. In: Ullmann’s Encyclopedia of Industrial Chemistry, 7th edition, electronic release, 7th edn. Wiley, Weinheim, pp 1–14

  2. Morgan M, Chem Ind (London) (1996) 645–648

  3. Meyer W (1976) Hydrocarbon Process. Int Ed 194:235–238

    Google Scholar 

  4. Zou J-J, Zhang X, Kong J, Wang L (2008) Fuel 87:3655–3659

    Article  CAS  Google Scholar 

  5. Hao M, Yang B, Wang H, Liu G, Qi S (2010) J Phys Chem A 114:3811–3817

    Article  CAS  Google Scholar 

  6. Cornils B, Payer R (1974) Chem Ztg 98:70–76

    CAS  Google Scholar 

  7. Webber KM (2005) Lyondell Chemical Company US 2005/0038303 A1

  8. Dragutan V, Streck R (2000) Catalytic Polymerization of Cycloolefins. Elsevier, Amsterdam

    Google Scholar 

  9. Degenhardt H (1982) PhD thesis, RWTH Aachen University

  10. Keim W, Behr A, Degenhardt H (1983) Chem Ing Tech 55:960–962

    Article  CAS  Google Scholar 

  11. Antonova TN, Abramov IA, Feldblyum VS, Abramov IG, Danilova AS (2009) Pet Chem 49:366–368

    Article  Google Scholar 

  12. Liu G, Mi Z, Wang L, Zhang X, Zhang S (2006) Ind Eng Chem Res 45:8807–8814

    Article  CAS  Google Scholar 

  13. Dash P, Dehm NA, Scott RWJ (2008) J Mol Catal A 286:114–119

    Article  CAS  Google Scholar 

  14. Nguyen B, Brown JM (2009) Adv Synth Catal 351:1333–1343

    Article  CAS  Google Scholar 

  15. Gwynn M (1939) J Am Oil Chem Soc 16:25–28

    CAS  Google Scholar 

  16. Palczewska W (1975) Catalytic Reactivity of Hydrogen on Palladium and Nickel Hydride Phases. In: Eley DD, Pines H, Weisz PB (eds) Advances in Catalysis. Academic Press, New York, pp 245–291

    Google Scholar 

  17. Aston JG, Mitacek P Jr (1962) Nature 195:70–71

    Article  CAS  Google Scholar 

  18. Somorjai GA, Jeong Y (2008) Top Catal 49:126–135

    Article  CAS  Google Scholar 

  19. Belkacemi K, Boulmerka A, Arul J, Hamoudi S (2006) Top Catal 37:113–120

    Article  CAS  Google Scholar 

  20. Gual A, Godard C, Castillón S, Claver C (2010) Dalton Trans 39:11499–11512

    Article  CAS  Google Scholar 

  21. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  22. Tsuji Y, Fujihara T (2007) Inorg Chem 46:1895–1902

    Article  CAS  Google Scholar 

  23. Crespo-Quesada M, Cardenas-Lizana F, Dessimoz A-L, Minsker LK (2012) ACS Catal. 2:1773–1786

    Article  CAS  Google Scholar 

  24. Starkey-Ott L, Finke RG (2007) Coord Chem Rev 251:1075–1100

    Article  Google Scholar 

  25. Schwarze M, Keilitz J, Nowag S, Parapat RY, Haag R, Schomäcker R (2011) Langmuir 27:6511–6518

    Article  CAS  Google Scholar 

  26. Behr A, Schmidke H (1993) Chem Ing Tech 65:568–569

    Article  CAS  Google Scholar 

  27. Behr A, Lux A (2012) (in preparation)

  28. Astruc D (2007) Inorg Chem 46:1884–1894

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Iris Henkel for ICP-OES measurements and Monika Meuris (Group of Prof. Tiller) for TEM measurements and Jens Beneken (Group of Prof. Rehage) for supports in DLS measurements. This work was financially supported by the DFG (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Behr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behr, A., Manz, V., Lux, A. et al. Highly Selective Mono-hydrogenation of Dicyclopentadiene with Pd-nanoparticles. Catal Lett 143, 241–245 (2013). https://doi.org/10.1007/s10562-013-0960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-0960-3

Keywords

Navigation