Skip to main content
Log in

Selective C=C Hydrogenation of Unsaturated Hydrocarbons in Neat Water Over Stabilized Palladium Nanoparticles Via Supported 12-Tungstophosphoric Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Stabilized Pd(0) nanoparticles by supported 12-tungstophosphoric acid (Pd(0)-TPA/ZrO2) was explored as a sustainable recyclable catalyst for selective C=C hydrogenation of cyclohexene and crotonaldehyde. The catalyst shows an outstanding performance [catalyst to substrate ratio (1:1.31 × 104)] towards high conversion as well as 100% selectivity of the desired product with high turnover number (> 10,000) and turnover frequency (> 2600 h−1) for both the systems. The use of neat water as a solvent and mild reaction conditions makes the present system environmentally benign and green. Moreover, the catalyst could be recovered and reused up to five cycles without any significant loss in their conversion as well as selectivity. The viability of the catalyst was evaluated towards different aromatic as well as aliphatic arenes and found to be excellent in all the cases. The obtained selectivity, especially butyraldehyde, was correlated with the nature of the catalyst as well as solvent and based on the study, a plausible mechanism for both the reactions was also proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Panpranot J, Phandinthong K, Praserthdam P, Hasegawa M, S-i Fujita, Arai M (2006) A comparative study of liquid-phase hydrogenation on Pd/SiO2 in organic solvents and under pressurized carbon dioxide: activity change and metal leaching/sintering. J Mol Catal A 253:20–24

    Article  CAS  Google Scholar 

  2. Campo BC, Volpe MA, Gigola CE (2009) Liquid-phase hydrogenation of crotonaldehyde over platinum- and palladium-based catalysts. Ind Eng Chem Res 48:10234–10239

    Article  CAS  Google Scholar 

  3. Tao R, Miao S, Liu Z, Xie Y, Han B, An G, Ding K (2009) Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reactions. Green Chem 11:96–101

    Article  CAS  Google Scholar 

  4. Zhang T, Li B, Zhang X, Qiu J, Han W, Yeung KL (2014) Pd nanoparticles immobilized in a microporous/mesoporous composite ZIF-8/MSS: a multifunctional catalyst for the hydrogenation of alkenes. Microporous Mesoporous Mater 197:324–330

    Article  CAS  Google Scholar 

  5. Puskas R, Sápi A, Kukovecz Á, Kónya Z (2016) Understanding the role of post-CCVD synthetic impurities, functional groups and functionalization-based oxidation debris on the behaviour of carbon nanotubes as a catalyst support in cyclohexene hydrogenation over Pd nanoparticles. RSC Adv 6:88538–88545

    Article  CAS  Google Scholar 

  6. Zhang C, Leng Y, Jiang P, Li J, Du S (2017) Immobilizing palladium nanoparticles on nitrogen-doped carbon for promotion of formic acid dehydrogenation and alkene hydrogenation. ChemistrySelect 2:5469–5474

    Article  CAS  Google Scholar 

  7. Zhao F, Ikushima Y, Chatterjee M, Shirai M, Arai M (2003) An effective and recyclable catalyst for hydrogenation of α, β-unsaturated aldehydes into saturated aldehydes in supercritical carbon dioxide. Green Chem 5:76–79

    Article  CAS  Google Scholar 

  8. Iwasa N, Takizawa M, Arai M (2005) Palladium-based alloy and monometallic catalysts for gas phase hydrogenation of crotonaldehyde: effects of alloying and alloy crystallite size. Appl Catal A 283:255–263

    Article  CAS  Google Scholar 

  9. Harraz FA, El-Hout SE, Killa HM, Ibrahim IA (2013) Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. J Mol Catal A 370:182–188

    Article  CAS  Google Scholar 

  10. Özkar S, Finke RG (2016) Palladium(0) nanoparticle formation, stabilization, and mechanistic studies: Pd(acac)2 as a preferred precursor, [Bu4 N]2HPO4 stabilizer, plus the stoichiometry, kinetics, and minimal, four-step mechanism of the palladium nanoparticle formation and subsequent agglomeration reactions. Langmuir 32:3699–3716

    Article  CAS  PubMed  Google Scholar 

  11. Strimbu L, Liu J, Kaifer AE (2003) Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir 19:483–485

    Article  CAS  Google Scholar 

  12. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-Palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  PubMed  Google Scholar 

  13. Hamill NA, Hardacre C, McMath SEJ (2002) In situ XAFS investigation of palladium species present during the heck reaction in room temperature ionic liquids. Green Chem 4:139–142

    Article  CAS  Google Scholar 

  14. Rocaboy C, Gladysz JA (2002) Highly active thermomorphic fluorous palladacycle catalyst precursors for the heck reaction; evidence for a palladium nanoparticle pathway. Org Lett 4:1993–1996

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP−Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18:4921–4925

    Article  CAS  Google Scholar 

  16. Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Ultrasound promoted C-C bond formation: heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun 17:1544–1545

    Article  CAS  Google Scholar 

  17. Li Y, El-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the suzuki reactions in aqueous solution. Org Lett 105:8938–8943

    CAS  Google Scholar 

  18. Moreno-Mañas M, Pleixats R, Villarroya S (2001) Fluorous phase soluble palladium nanoparticles as recoverable catalysts for suzuki cross-coupling and heck reactions. Organometallics 20:4524–4528

    Article  CAS  Google Scholar 

  19. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  Google Scholar 

  20. Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org Lett 2:2385–2388

    Article  CAS  PubMed  Google Scholar 

  21. Pathak S, Greci MT, Kwong RC, Mercado K, Prakash GKS, Olah GA, Thompson ME (2000) Synthesis and applications of palladium-coated Poly(vinylpyridine) nanospheres. Chem Mater 12:1985–1989

    Article  CAS  Google Scholar 

  22. Jana NR, Wang ZL, Pal T (2000) Redox catalytic properties of palladium nanoparticles: surfactant and electron donor−acceptor effects. Langmuir 16:2457–2463

    Article  CAS  Google Scholar 

  23. Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  24. Reetz MT, Breinbauer R, Wanninger K (1996) Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladiumnickel bimetallic clusters. Tetrahedron Lett 37:4499–4502

    Article  CAS  Google Scholar 

  25. La Sorella G, Sperni L, Canton P, Coletti L, Fabris F, Strukul G, Scarso A (2018) Selective hydrogenations and dechlorinations in water mediated by anionic surfactant-stabilized pd nanoparticles. J Org Chem 83:7438–7446

    Article  CAS  PubMed  Google Scholar 

  26. Kogan V, Aizenshtat Z, Popovitz-Biro R, Neumann R (2002) Carbon−carbon and carbon−nitrogen coupling reactions catalyzed by palladium nanoparticles derived from a palladium substituted Keggin-type polyoxometalate. Organic Lett. 4:3529–3532

    Article  CAS  Google Scholar 

  27. Zhang J, Keita B, Nadjo L, Mbomekalle IM, Liu T (2008) Self-assembly of polyoxometalate macroanion-capped Pd0 nanoparticles in aqueous solution. Langmuir 24:5277–5283

    Article  CAS  PubMed  Google Scholar 

  28. D’Souza L, Noeske M, Richards RM, Kortz U (2013) Palladium (0) metal clusters: novel krebs type polyoxoanions stabilized, extremely active hydrogenation catalyst. Appl Catal A 453:262–271

    Article  CAS  Google Scholar 

  29. Villanneau R, Roucoux A, Beaunier P, Brouri D, Proust A (2014) Simple procedure for vacant POM-stabilized palladium (0) nanoparticles in water: structural and dispersive effects of lacunary polyoxometalates. RSC Adv 4:26491–26498

    Article  CAS  Google Scholar 

  30. Kogan V, Aizenshtat Z, Neumann R (2002) Preferential catalytic hydrogenation of aromatic compounds versus ketones with a palladium substituted polyoxometalate as pre-catalyst. New J Chem 26:272–274

    Article  CAS  Google Scholar 

  31. Rana S, Parida KM (2012) A simple and efficient protocol using palladium based lacunary phosphotungstate supported mesoporous silica towards hydrogenation of p-nitrophenol to p-aminophenol at room temperature. Catal Sci Technol 2:979–986

    Article  CAS  Google Scholar 

  32. Patel A, Patel A (2018) Stabilized palladium nanoparticles: synthesis, multi-spectroscopic characterization and application for Suzuki–Miyaura reaction. Catal Lett 148:3534–3547

    Article  CAS  Google Scholar 

  33. Patel S, Purohit N, Patel A (2003) Synthesis, characterization and catalytic activity of new solid acid catalysts, H3PW12O40 supported on to hydrous zirconia. J Mol Catal A 192:195–202

    Article  CAS  Google Scholar 

  34. Bhatt N, Shah C, Patel A (2007) 12-tungstophosphoric and 12-tungstosilicicacid supported onto hydrous zirconia for liquid phase tert-butylation of m-cresol. Catal Lett 117:146–152

    Article  CAS  Google Scholar 

  35. Pathan S, Patel A (2012) Heck coupling catalyzed by Pd exchanged supported 12-tunstophosphoric acid—an efficient ligand free, low Pd-loading heterogeneous catalyst. RSC Adv 2:116–120

    Article  CAS  Google Scholar 

  36. Militello MC, Simko SJ (1994) Elemental palladium by XPS. Surf Sci Spectra 3:387–394

    Article  CAS  Google Scholar 

  37. Abbas Khakiani B, Pourshamsian K, Veisi H (2015) A highly stable and efficient magnetically recoverable and reusable Pd nanocatalyst in aqueous media heterogeneously catalysed Suzuki C-C cross-coupling reactions. Appl Organomet Chem 29:259–265

    Article  CAS  Google Scholar 

  38. Patel A, Patel A, Narkhede N (2019) Hydrogenation of cyclohexene in aqueous solvent mixture over a sustainable recyclable catalyst comprising palladium and monolacunary silicotungstate anchored to MCM-41. Eur J Inorg Chem 2019:423–429

    Article  CAS  Google Scholar 

  39. Liu J-H, Yang L-M, Ganz E (2018) Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM–Pc monolayers. ACS Sustain Chem Eng 6:15494–15502

    Article  CAS  Google Scholar 

  40. Xu L, Yang L-M, Ganz E (2018) Mn–graphene single-atom catalyst evaluated for CO oxidation by computational screening. Theor Chem Acc 137:98

    Article  CAS  Google Scholar 

  41. Ruiz-Martinez J, Fukui Y, Komatsu T, Sepulveda-Escribano A (2008) Ru–Ti intermetallic catalysts for the selective hydrogenation of crotonaldehyde. J Catal 260:150–156

    Article  CAS  Google Scholar 

  42. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev 40:81–126

    Article  CAS  Google Scholar 

  43. Vannice MA, Sen B (1989) Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J Catal 115:65–78

    Article  CAS  Google Scholar 

  44. Abid M, Ehret G, Touroude R (2001) Pt/CeO2 catalysts: correlation between nanostructural properties and catalytic behaviour in selective hydrogenation of crotonaldehyde. Appl Catal A 217:219–229

    Article  CAS  Google Scholar 

  45. Hubaut R, Daage M, Bonnelle JP (1986) Selective hydrogenation on copper chromite catalysts IV. Hydrogenation selectivity for α, β-unsaturated aldehydes and ketones. Appl Catal 22:231–241

    Article  CAS  Google Scholar 

  46. Augustine RL (1976) Organic functional group hydrogenation. Catal Rev 13:285–316

    Article  CAS  Google Scholar 

  47. Touroude R (1980) Catalytic behavior of group VIII transition metals in the deuterium-acrolein reaction. J Catal 65:110–120

    Article  CAS  Google Scholar 

  48. Shirai M, Tanaka T, Arai M (2001) Selective hydrogenation of α, β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen. J Mol Catal A 168:99–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Department of Atomic Energy (DAE) and Board of Research in Nuclear Science (BRNS), Project No. 37(2)/14/34/2014-BRNS, Mumbai, for the financial support. One of the authors Mr. Anish Patel is thankful to the same for the grant of JRF. We are also thankful to Department of Chemistry, The Maharaja Sayajirao University of Baroda for BET surface area analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Patel.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Patel, A. Selective C=C Hydrogenation of Unsaturated Hydrocarbons in Neat Water Over Stabilized Palladium Nanoparticles Via Supported 12-Tungstophosphoric Acid. Catal Lett 149, 1476–1485 (2019). https://doi.org/10.1007/s10562-019-02763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02763-1

Keywords

Navigation