Skip to main content
Log in

Highly-Dispersed Copper-Based Catalysts from Cu–Zn–Al Layered Double Hydroxide Precursor for Gas-Phase Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The highly-dispersed copper-based catalysts for the gas-phase hydrogenation of dimethyl oxalate to ethylene glycol (EG) were prepared from a Cu–Zn–Al layered double hydroxide (LDH) precursor. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, H2 temperature programmed reduction (H2-TPR) and H2–N2O titration indicated that the composition, texture, and structure of resulting copper-based catalysts were profoundly affected by the calcination temperature of LDH precursor. Moreover, the as-synthesized catalyst calcined at 600 °C was found to exhibit a superior catalytic hydrogenation performance with an EG yield of 94.7 % to the other catalysts calcined at 500 and 700 °C, which should be mainly attributed to the presence of the highly-dispersed active metallic copper species over metal oxide matrix.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matteoli U, Menchi G, Bianchi M, Piacenti F (1991) J Mol Catal 64:257

    Article  CAS  Google Scholar 

  2. Teunissen HT, Elsevier CJ (1997) Chem Commun 667

  3. van Engelen MC, Teunissen HT, de Vries JG, Elsevier CJ (2003) J Mol Catal A 206:185

    Article  Google Scholar 

  4. Xu GH, Li YC, Li ZH, Wang HJ (1995) Ind Eng Chem Res 34:2371

    Article  CAS  Google Scholar 

  5. Weissermel K, Arpe HJ (1993) Industrial organic chemistry. VCH Verlag, Weinheim

    Google Scholar 

  6. Susumu T, Kozo F, Keigo N, Masaoki M, Katsuhiko M (1982) EP0046983

  7. Fedor P (1982) EP0060787

  8. Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xua HL, Fan KN (2008) J Catal 257:172

    Article  CAS  Google Scholar 

  9. Wang S, Li X, Yin Q, Zhu L, Luo Z (2011) Catal Commun 12:1246

    Article  CAS  Google Scholar 

  10. Yin A, Guo X, Dai W, Fan K (2009) J Phys Chem C 113:11003

    Article  CAS  Google Scholar 

  11. Zhu YY, Wang SR, Zhu LJ, Ge XL, Li XB, Luo ZY (2010) Catal Lett 135:275

    Article  CAS  Google Scholar 

  12. He L, Chen X, Ma J, He H, Wang W (2010) J Sol Gel Sci Technol 55:285

    Article  CAS  Google Scholar 

  13. Yin A, Guo X, Dai WL, Fan K (2011) Catal Commun 12:412

    Article  CAS  Google Scholar 

  14. Yin A, Wen C, Guo X, Dai WL, Fan K (2011) J Catal 280:77

    Article  CAS  Google Scholar 

  15. Molnár Á, Katona T, Bartók M, Varga K (1991) J Mol Catal 64:41

    Article  Google Scholar 

  16. Kobayashi H, Takezawa N, Minochi C (1981) J Catal 69:487

    Article  CAS  Google Scholar 

  17. Bartók M, Molnár Á (1980) J Chem Soc Chem Commun 1178

  18. Bartók M, Molnár Á (1982) J Chem Soc Chem Commun 1089

  19. Bartók M, Palinko I, Molnár Á (1987) J Chem Soc Chem Commun 953

  20. Bridier B, Lopez N, Pérez-Ramírez J (2010) J Catal 269:80

    Article  CAS  Google Scholar 

  21. Bertero NM, Apesteguia CR, Marchi AJ (2008) Appl Catal A Gen 349:100

    Article  CAS  Google Scholar 

  22. Li F, Duan X (2006) Struct Bonding (Berlin) 119:193

    CAS  Google Scholar 

  23. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) J Catal 213:191

    Article  CAS  Google Scholar 

  24. Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D (2005) Chem Mater 17:6473

    Article  Google Scholar 

  25. Gérardin C, Kostadinova D, Coq B, Tichit D (2008) Chem Mater 20:2086

    Article  Google Scholar 

  26. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Chem Mater 14:4286

  27. Kawamoto AM, Pardini LC, Rezende LC (2004) Aerosp Sci Technol 8:591

    Article  CAS  Google Scholar 

  28. Guerreiro ED, Gorriz OF, Rivarola JB, Arrúa LA (1997) Appl Catal A 165:259

    Article  CAS  Google Scholar 

  29. Zhang L, Li F, Evans DG, Duan X (2004) Mater Chem Phys 87:402

    Article  CAS  Google Scholar 

  30. Cavani F, Trifiró F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  31. Groen JC, Peffer LAA, Pérez-Ramírez J (2003) Microporous Mesoporous Mater 60:1

    Google Scholar 

  32. Jiang Z, Hao Z, Yu J, Hou H, Hu C, Su J (2005) Catal Lett 99:157

    Article  CAS  Google Scholar 

  33. Frost J (1988) Nature 334:577

    Article  CAS  Google Scholar 

  34. Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Angew Chem Int Ed 50:2162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by 973 Program (2011CBA00506) and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Liu, Q., Fan, G. et al. Highly-Dispersed Copper-Based Catalysts from Cu–Zn–Al Layered Double Hydroxide Precursor for Gas-Phase Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. Catal Lett 142, 1121–1127 (2012). https://doi.org/10.1007/s10562-012-0871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0871-8

Keywords

Navigation