Skip to main content

Advertisement

Log in

Impaction bone grafting in revision hip surgery: past, present and future

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Joint replacement surgery can have excellent clinical results. However, as the number of patients undergoing surgery increases, the number of failed joint replacements is set to rise. One of the greatest challenges for the revision surgeon is the restoration of bone stock. This article focuses upon revision hip surgery, with particular reference to the scope of the problem; historical and current solutions to bone loss in the femur and acetabulum; the clinical results following revision surgery; and the basic science behind impaction bone grafting, before ending with possible future directions for improving the restoration of bone stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert C, Patil S et al (2007) Cement penetration and primary stability of the femoral component after impaction allografting. A biomechanical study in the cadaveric femur. J Bone Joint Surg Br 89(7):962–970

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ, Keyak JH et al (1992) Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am 74(5):747–752

    CAS  PubMed  Google Scholar 

  • Arts JJ, Verdonschot N et al (2006) Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model. Acta Orthop 77(2):227–233

    Article  PubMed  Google Scholar 

  • Aspenberg P, Thoren K (1990) Lipid extraction enhances bank bone incorporation. An experiment in rabbits. Acta Orthop Scand 61(6):546–548

    CAS  PubMed  Google Scholar 

  • Azuma T, Yasuda H et al (1994) Compressed allograft chips for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Br 76(5):740–744

    CAS  PubMed  Google Scholar 

  • Bankes MJK, Allen PW, Aldam CH (2003) Results of impaction grafting in revision hip arthroplasty at two to seven years using fresh and irradiated allograft bone. Hip international 13(Part 1):1–11

    Google Scholar 

  • Barrack RL, Burnett SJ (2005) Preoperative planning for revision total hip arthroplasty. J Bone Joint Surg Am 87(12):2800–2811

    PubMed  Google Scholar 

  • Bavadekar A, Cornu O et al (2001) Stiffness and compactness of morcellised grafts during impaction—an in vitro study with human femoral heads. Acta Orthop Scand 72(5):470–476

    CAS  PubMed  Google Scholar 

  • Berrey BH Jr, Lord CF et al (1990) Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am 72(6):825–833

    PubMed  Google Scholar 

  • Board TN, Rooney P et al (2006) Impaction allografting in revision total hip replacement. J Bone Joint Surg Br 88(7):852–857

    Article  CAS  PubMed  Google Scholar 

  • Board TN, Rooney P et al (2008) Strain imparted during impaction grafting may contribute to bony incorporation: an in vitro study of the release of bmp-7 from allograft. J Bone Joint Surg Br 90(6):821–824

    Article  CAS  PubMed  Google Scholar 

  • Bolder SB, Schreurs BW et al (2003) Particle size of bone graft and method of impaction affect initial stability of cemented cups: human cadaveric and synthetic pelvic specimen studies. Acta Orthop Scand 74(6):652–657

    Article  PubMed  Google Scholar 

  • Bolder SB, Verdonschot N et al (2007) Technical factors affecting cup stability in bone impaction grafting. Proc Inst Mech Eng [H] 221(1):81–86

    CAS  Google Scholar 

  • Boldt JG, Dilawari P et al (2001) Revision total hip arthroplasty using impaction bone grafting with cemented nonpolished stems and charnley cups. J Arthroplasty 16(8):943–952

    Article  CAS  PubMed  Google Scholar 

  • Bolland BJ, Partridge K et al (2006) Biological and mechanical enhancement of impacted allograft seeded with human bone marrow stromal cells: potential clinical role in impaction bone grafting. Regen Med 1(4):457–467

    Article  CAS  PubMed  Google Scholar 

  • Bolland BJ, New AM et al (2007a) Vibration-assisted bone-graft compaction in impaction bone grafting of the femur. J Bone Joint Surg Br 89(5):686–692

    Article  CAS  PubMed  Google Scholar 

  • Bolland BJ, Tilley S et al (2007b) Adult mesenchymal stem cells and impaction grafting: a new clinical paradigm shift. Expert Rev Med Devices 4(3):393–404

    Article  PubMed  Google Scholar 

  • Bolland BJ, Kanczler JM et al (2008a) The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone graft extender in impaction bone grafting. Biomaterials 29(22):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Bolland BJ, New AM et al (2008b) The role of vibration and drainage in femoral impaction bone grafting. J Arthroplasty 23(8):1157–1164

    Article  PubMed  Google Scholar 

  • Brewster NT, Gillespie WJ et al (1999) Mechanical considerations in impaction bone grafting. J Bone Joint Surg Br 81(1):118–124

    Article  CAS  PubMed  Google Scholar 

  • Buckley SC, Stockley I et al (2005) Irradiated allograft bone for acetabular revision surgery. Results at a mean of five years. J Bone Joint Surg Br 87(3):310–313

    Article  CAS  PubMed  Google Scholar 

  • Buma P, Lamerigts N et al (1996) Impacted graft incorporation after cemented acetabular revision. Histological evaluation in 8 patients. Acta Orthop Scand 67(6):536–540

    Article  CAS  PubMed  Google Scholar 

  • Cornu O, Banse X et al (2000) Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18(3):426–431

    Article  CAS  PubMed  Google Scholar 

  • Cornu O, Bavadekar A et al (2003a) Impaction bone grafting with freeze-dried irradiated bone. Part I. Femoral implant stability: cadaver experiments in a hip simulator. Acta Orthop Scand 74(5):547–552

    Article  PubMed  Google Scholar 

  • Cornu O, Bavadekar A et al (2003b) Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morcellised grafts: experiments in cadavers. Acta Orthop Scand 74(5):553–558

    Article  PubMed  Google Scholar 

  • Cornu O, Libouton X et al (2004) Freeze-dried irradiated bone brittleness improves compactness in an impaction bone grafting model. Acta Orthop Scand 75(3):309–314

    Article  PubMed  Google Scholar 

  • Craig R (2004) Soil mechanics, 7th edn. Spon Press, London

    Google Scholar 

  • Cuckler JM (2002) Management strategies for acetabular defects in revision total hip arthroplasty. J Arthroplasty 17(4 Suppl 1):153–156

    Article  PubMed  Google Scholar 

  • Currey JD, Foreman J et al (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 15(1):111–117

    Article  CAS  PubMed  Google Scholar 

  • DePaula CA, Truncale KG et al (2005) Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank 6(4):287–298

    Article  CAS  PubMed  Google Scholar 

  • Dunlop DG, Brewster NT et al (2003) Techniques to improve the shear strength of impacted bone graft: the effect of particle size and washing of the graft. J Bone Joint Surg Am 85-A(4):639–646

    PubMed  Google Scholar 

  • Eastlund T, Strong D (2003) Infectious disease transmissions through tissue transplantation. In: Phillips GO, Kearney JN, Strong DM, vonVersen R, Nather A (eds) Advances in Tissue Banking, vol 7. Singapore, World Scientific, pp 51–131

    Google Scholar 

  • Edwards SA, Pandit HG et al (2003) Impaction bone grafting in revision hip surgery. J Arthroplasty 18(7):852–859

    Article  CAS  PubMed  Google Scholar 

  • Eldridge JD, Smith EJ et al (1997a) Massive early subsidence following femoral impaction grafting. J Arthroplasty 12(5):535–540

    Article  CAS  PubMed  Google Scholar 

  • Eldridge JDJ, Hubble M, Nelson K, Smith EJ, Learmonth ID (1997b) The effect of bone chip size on initial stability following femoral impaction grafting. J Bone Joint Surg Br 79(Suppl 3):364

    Google Scholar 

  • Enneking WF, Campanacci DA (2001) Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am 83-A(7):971–986

    CAS  PubMed  Google Scholar 

  • Enneking WF, Mindell ER (1991) Observations on massive retrieved human allografts. J Bone Joint Surg Am 73(8):1123–1142

    CAS  PubMed  Google Scholar 

  • Fosse L, Ronningen H et al (2004) Impacted bone stiffness measured during construction of morcellised bone samples. J Biomech 37(11):1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Fosse L, Ronningen H et al (2006a) Factors affecting stiffness properties in impacted morcellised bone used in revision hip surgery: an experimental in vitro study. J Biomed Mater Res A 78(2):423–431

    PubMed  Google Scholar 

  • Fosse L, Ronningen H et al (2006b) Influence of water and fat content on compressive stiffness properties of impacted morcellised bone: an experimental ex vivo study on bone pellets. Acta Orthop 77(1):15–22

    Article  PubMed  Google Scholar 

  • Galea G, Kearney JN (2005) Clinical effectiveness of processed and unprocessed bone. Transfus Med 15(3):165–174

    CAS  PubMed  Google Scholar 

  • Gie GA, Linder L et al (1993a) Contained morcellised allograft in revision total hip arthroplasty. Surgical technique. Orthop Clin North Am 24(4):717–725

    CAS  PubMed  Google Scholar 

  • Gie GA, Linder L et al (1993b) Impacted cancellous allografts and cement for revision total hip arthroplasty. J Bone Joint Surg Br 75(1):14–21

    CAS  PubMed  Google Scholar 

  • Godette GA, Kopta JA et al (1996) Biomechanical effects of gamma irradiation on fresh frozen allografts in vivo. Orthopedics 19(8):649–653

    CAS  PubMed  Google Scholar 

  • Griffon DJ, Dunlop DG et al (2001) An ovine model to evaluate the biologic properties of impacted morselized bone graft substitutes. J Biomed Mater Res 56(3):444–451

    Article  CAS  PubMed  Google Scholar 

  • Gross AE (2006) Restoration of acetabular bone loss 2005. J Arthroplasty 21(4 Suppl 1):117–120

    Article  PubMed  Google Scholar 

  • Gross AE, Allan DG et al (1993) Revision arthroplasty of the proximal femur using allograft bone. Orthop Clin North Am 24(4):705–715

    CAS  PubMed  Google Scholar 

  • Gross AE, Blackley H et al (2002a) The role of allografts in revision arthroplasty of the hip. Instr Course Lect 51:103–113

    PubMed  Google Scholar 

  • Gross AE, Saleh KJ et al (2002b) Acetabular revision using grafts and cages. Am J Orthop 31(4):213–215

    PubMed  Google Scholar 

  • Haddad F, Garbuz D (1999) Instructional course lectures, The American Academy of Orthopaedic Surgeons—femoral bone loss in patients managed with revision hip replacement: results of circumferential allograft replacement. J Bone Joint Surg Am 81:420–436

    Article  Google Scholar 

  • Haddad FS, Masri BA et al (1999) The treatment of the infected hip replacement. The complex case. Clin Orthop Relat Res 369:144–156

    Article  PubMed  Google Scholar 

  • Halliday BR, English HW et al (2003) Femoral impaction grafting with cement in revision total hip replacement. Evolution of the technique and results. J Bone Joint Surg Br 85(6):809–817

    CAS  PubMed  Google Scholar 

  • Hamer AJ, Stockley I et al (1999) Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Br 81(2):342–344

    Article  CAS  PubMed  Google Scholar 

  • Hannink G, Schreurs BW et al (2007a) Irradiation has no effect on the incorporation of impacted morselized bone: a bone chamber study in goats. Acta Orthop 78(1):31–38

    Article  PubMed  Google Scholar 

  • Hannink G, Schreurs BW et al (2007b) No positive effects of OP-1 device on the incorporation of impacted graft materials after 8 weeks: a bone chamber study in goats. Acta Orthop 78(4):551–558

    Article  PubMed  Google Scholar 

  • Hassaballa M, Mehendale S et al (2009) Subsidence of the stem after impaction bone grafting for revision hip replacement using irradiated bone. J Bone Joint Surg Br 91(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Hastings DE, Parker SM (1975) Protrusio acetabuli in rheumatoid arthritis. Clin Orthop Relat Res 108:76–83

    Article  PubMed  Google Scholar 

  • Heekin RD, Engh CA et al (1995) Morcellised allograft in acetabular reconstruction. A postmortem retrieval analysis. Clin Orthop Relat Res 319:184–190

    PubMed  Google Scholar 

  • Hernigou P, Delepine G, Goutallier D, Julieron A (1993) Massive allografts sterilised by irradiation. Clinical results. J Bone Joint Surg Br 75–76:904–913

    Google Scholar 

  • Holt GM, Stockley I, Elson RA, Ibbotson C (2001) A comparison of the performance of irradiated and non-irradiated bone graft in hip surgery. Hip international 11(Part 1):18–24

    Google Scholar 

  • Hostner J, Hultmark P et al (2001) Impaction technique and graft treatment in revisions of the femoral component: laboratory studies and clinical validation. J Arthroplasty 16(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Ireland L, Spelman D (2005) Bacterial contamination of tissue allografts—experiences of the donor tissue bank of Victoria. Cell Tissue Bank 6(3):181–189

    Article  PubMed  Google Scholar 

  • Jinno T, Miric A et al (2000) The effects of processing and low dose irradiation on cortical bone grafts. Clin Orthop Relat Res 375:275–285

    Article  PubMed  Google Scholar 

  • Kligman M, Con V et al (2002) Cortical and cancellous morselized allograft in revision total hip replacement. Clin Orthop Relat Res 401:139–148

    Article  PubMed  Google Scholar 

  • Knight JL, Helming C (2000) Collarless polished tapered impaction grafting of the femur during revision total hip arthroplasty: pitfalls of the surgical technique and follow-up in 31 cases. J Arthroplasty 15(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Ong K et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    Article  PubMed  Google Scholar 

  • Leopold SS, Berger RA et al (1999) Impaction allografting with cement for revision of the femoral component. A minimum four-year follow-up study with use of a precoated femoral stem. J Bone Joint Surg Am 81(8):1080–1092

    CAS  PubMed  Google Scholar 

  • Lie SA, Havelin LI et al (2004) Failure rates for 4762 revision total hip arthroplasties in the Norwegian Arthroplasty Register. J Bone Joint Surg Br 86(4):504–509

    CAS  PubMed  Google Scholar 

  • Lietman SA, Tomford WW et al (2000) Complications of irradiated allografts in orthopaedic tumor surgery. Clin Orthop Relat Res 375:214–217

    Article  PubMed  Google Scholar 

  • Lind M, Krarup N et al (2002) Exchange impaction allografting for femoral revision hip arthroplasty: results in 87 cases after 3.6 years’ follow-up. J Arthroplasty 17(2):158–164

    Article  PubMed  Google Scholar 

  • Linder L (2000) Cancellous impaction grafting in the human femur: histological and radiographic observations in 6 autopsy femurs and 8 biopsies. Acta Orthop Scand 71(6):543–552

    Article  CAS  PubMed  Google Scholar 

  • Ling RS, Timperley AJ et al (1993) Histology of cancellous impaction grafting in the femur. A case report. J Bone Joint Surg Br 75(5):693–696

    CAS  PubMed  Google Scholar 

  • Lomas R, Drummond O et al (2000) Processing of whole femoral head allografts: a method for improving clinical efficacy and safety. Cell Tissue Bank 1(3):193–200

    Article  PubMed  Google Scholar 

  • Lord CF, Gebhardt MC et al (1988) Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am 70(3):369–376

    CAS  PubMed  Google Scholar 

  • Loty B, Courpied JP et al (1990) Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop 14(3):237–242

    CAS  PubMed  Google Scholar 

  • Mankin HJ, Fogelson FS et al (1976) Massive resection and allograft transplantation in the treatment of malignant bone tumors. N Engl J Med 294(23):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Mankin HJ, Gebhardt MC et al (1996) Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res 324:86–97

    Article  PubMed  Google Scholar 

  • McCollum DE, Nunley JA et al (1980) Bone-grafting in total hip replacement for acetabular protrusion. J Bone Joint Surg Am 62(7):1065–1073

    CAS  PubMed  Google Scholar 

  • McGee MA, Findlay DM et al (2004) The use of OP-1 in femoral impaction grafting in a sheep model. J Orthop Res 22(5):1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Mendes DG, Roffman M et al (1984) Reconstruction of the acetabular wall with bone graft in arthroplasty of the hip. Clin Orthop Relat Res 186:29–37

    PubMed  Google Scholar 

  • Moreau MF, Gallois Y et al (2000) Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 21(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • NAO (2008) http://www.statistics.gov.uk/cci/nugget.asp?id=949. Accessed 15 April 2009

  • Nelissen RG, Bauer TW et al (1995) Revision hip arthroplasty with the use of cement and impaction grafting. Histological analysis of four cases. J Bone Joint Surg Am 77(3):412–422

    CAS  PubMed  Google Scholar 

  • Nguyen H, Morgan DA et al (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105

    Article  PubMed  Google Scholar 

  • Ochs BG, Schmid U et al (2008) Acetabular bone reconstruction in revision arthroplasty: a comparison of freeze-dried, irradiated and chemically-treated allograft vitalised with autologous marrow versus frozen non-irradiated allograft. J Bone Joint Surg Br 90(9):1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Ornstein E, Atroshi I et al (2001) Results of hip revision using the Exeter stem, impacted allograft bone, and cement. Clin Orthop Relat Res 389:126–133

    Article  PubMed  Google Scholar 

  • Ornstein E, Franzen H et al (2004) Hip revision using the Exeter stem, impacted morselized allograft bone and cement: a consecutive 5-year radiostereometric and radiographic study in 15 hips. Acta Orthop Scand 75(5):533–543

    Article  PubMed  Google Scholar 

  • Ornstein E, Linder L et al (2009) Femoral impaction bone grafting with the Exeter stem—the Swedish experience: survivorship analysis of 1305 revisions performed between 1989 and 2002. J Bone Joint Surg Br 91(4):441–446

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Cruz E, Gebhardt MC et al (1997) The results of transplantation of intercalary allografts after resection of tumors. A long-term follow-up study. J Bone Joint Surg Am 79(1):97–106

    CAS  PubMed  Google Scholar 

  • Paprosky WG, Magnus RE (1994) Principles of bone grafting in revision total hip arthroplasty. Acetabular technique. Clin Orthop Relat Res 298:147–155

    PubMed  Google Scholar 

  • Parrish FF (1973) Allograft replacement of all or part of the end of a long bone following excision of a tumor. J Bone Joint Surg Am 55(1):1–22

    CAS  PubMed  Google Scholar 

  • Pelker RR, Friedlaender GE et al (1983) Biomechanical properties of bone allografts. Clin Orthop Relat Res 174:54–57

    PubMed  Google Scholar 

  • Piccaluga F, Gonzalez Della Valle A et al (2002) Revision of the femoral prosthesis with impaction allografting and a Charnley stem. A 2- to 12-year follow-up. J Bone Joint Surg Br 84(4):544–549

    Article  CAS  PubMed  Google Scholar 

  • Pitto RP, Di Muria GV et al (1998) Impaction grafting and acetabular reinforcement in revision hip replacement. Int Orthop 22(3):161–164

    Article  CAS  PubMed  Google Scholar 

  • Pratt JN, Griffon DJ et al (2002) Impaction grafting with morcellised allograft and tricalcium phosphate-hydroxyapatite: incorporation within ovine metaphyseal bone defects. Biomaterials 23(16):3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Pruss A, Kao M et al (1999) Virus safety of avital bone tissue transplants: evaluation of sterilization steps of spongiosa cuboids using a peracetic acid-methanol mixture. Biologicals 27(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Pruss A, Baumann B et al (2001) Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid-ethanol. Biologicals 29(2):59–66

    Article  CAS  PubMed  Google Scholar 

  • Pruss A, Kao M et al (2002) Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologicals 30(2):125–133

    Article  PubMed  Google Scholar 

  • Roffman M, Silbermann M et al (1983) Incorporation of bone graft covered with methylmethacrylate onto acetabular wall. An experimental study. Acta Orthop Scand 54(4):580–583

    Article  CAS  PubMed  Google Scholar 

  • Sanzen L, Carlsson A (1997) Transmission of human T-cell lymphotrophic virus type 1 by a deep-frozen bone allograft. Acta Orthop Scand 68(1):72–74

    Article  CAS  PubMed  Google Scholar 

  • Schreurs B, Huiskes R, Slooff TJH (1994a) The initial stability of cemented and noncemented femoral stems fixated with a bone grafting technique. Clin Mater 16:105–110

    Article  Google Scholar 

  • Schreurs BW, Buma P et al (1994b) Morsellized allografts for fixation of the hip prosthesis femoral component. A mechanical and histological study in the goat. Acta Orthop Scand 65(3):267–275

    Article  CAS  PubMed  Google Scholar 

  • Schreurs BW, Slooff TJ et al (2001a) Basic science of bone impaction grafting. Instr Course Lect 50:211–220

    CAS  PubMed  Google Scholar 

  • Schreurs BW, Slooff TJ et al (2001b) Acetabular reconstruction with bone impaction grafting and a cemented cup: 20 years’ experience. Clin Orthop Relat Res 393:202–215

    Article  PubMed  Google Scholar 

  • Schreurs BW, van Tienen TG et al (2001c) Favorable results of acetabular reconstruction with impacted morcellised bone grafts in patients younger than 50 years: a 10- to 18-year follow-up study of 34 cemented total hip arthroplasties. Acta Orthop Scand 72(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Schreurs BW, Thien TM et al (2003) Acetabular revision with impacted morselized cancellous bone graft and a cemented cup in patients with rheumatoid arthritis: three to fourteen-year follow-up. J Bone Joint Surg Am 85-A(4):647–652

    PubMed  Google Scholar 

  • Schreurs BW, Busch VJ et al (2004a) Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old. J Bone Joint Surg Am 86-A(11):2385–2392

    PubMed  Google Scholar 

  • Schreurs BW, Bolder SB et al (2004b) Acetabular revision with impacted morcellised cancellous bone grafting and a cemented cup. A 15- to 20-year follow-up. J Bone Joint Surg Br 86(4):492–497

    CAS  PubMed  Google Scholar 

  • Schreurs BW, Arts JJ et al (2005a) Femoral component revision with use of impaction bone-grafting and a cemented polished stem. J Bone Joint Surg Am 87(11):2499–2507

    Article  PubMed  Google Scholar 

  • Schreurs BW, Zengerink M et al (2005b) Bone impaction grafting and a cemented cup after acetabular fracture at 3–18 years. Clin Orthop Relat Res 437:145–151

    Article  PubMed  Google Scholar 

  • Schreurs BW, Arts JJ et al (2006) Femoral component revision with use of impaction bone-grafting and a cemented polished stem. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):259–274

    Article  PubMed  Google Scholar 

  • Schreurs BW, Luttjeboer J et al (2009) Acetabular revision with impacted morselized cancellous bone graft and a cemented cup in patients with rheumatoid arthritis. A concise follow-up, at eight to nineteen years, of a previous report. J Bone Joint Surg Am 91(3):646–651

    Article  PubMed  Google Scholar 

  • Shen G (1998) Femoral stem fixation. An engineering interpretation of the long-term outcome of Charnley and Exeter stems. J Bone Joint Surg Br 80(5):754–756

    Article  CAS  PubMed  Google Scholar 

  • Simon JP, Fowler JL, Gie GA, Ling RSM (1991) Impaction cancellous grafting of the femur in cemented total hip revision arthroplasty. J Bone Joint Surg Br 73-B:S73

    Google Scholar 

  • Simonds RJ (1993) HIV transmission by organ and tissue transplantation. AIDS 7(Suppl 2):S35–S38

    Article  PubMed  Google Scholar 

  • Slooff TJ, Buma P et al (1996) Acetabular and femoral reconstruction with impacted graft and cement. Clin Orthop Relat Res 324:108–115

    Article  PubMed  Google Scholar 

  • Slooff TJ, Huiskes R et al (1984) Bone grafting in total hip replacement for acetabular protrusion. Acta Orthop Scand 55(6):593–596

    Article  CAS  PubMed  Google Scholar 

  • Slooff TJ, Schreurs BW et al (1998) Impaction morcellised allografting and cement. Instr Course Lect 47:265–274

    CAS  PubMed  Google Scholar 

  • Slooff TJ, Schreurs BW et al (1999) Impaction morcellised allografting and cement. Instr Course Lect 48:79–89

    CAS  PubMed  Google Scholar 

  • Smith EJ, Richardson JB, Learmonth ID, Evans GP, Nelson K, Lee R, Dyson J (1996) The initial stability of femoral impaction grafting. Hip International 6(4):166–172

    Google Scholar 

  • Stulberg SD (2002) Impaction grafting: doing it right. J Arthroplasty 17(4 Suppl 1):147–152

    Article  PubMed  Google Scholar 

  • Sudo A, Hasegawa M et al (2008) Treatment of infected hip arthroplasty with antibiotic-impregnated calcium hydroxyapatite. J Arthroplasty 23(1):145–150

    Article  PubMed  Google Scholar 

  • Tagil M (2000) The morcellised and impacted bone graft. Animal experiments on proteins, impaction and load. Acta Orthop Scand Suppl 290:1–40

    CAS  PubMed  Google Scholar 

  • Tagil M, Aspenberg P (1998) Impaction of cancellous bone grafts impairs osteoconduction in titanium chambers. Clin Orthop Relat Res 352:231–238

    PubMed  Google Scholar 

  • Tagil M, Aspenberg P (2001) Fibrous tissue armoring increases the mechanical strength of an impacted bone graft. Acta Orthop Scand 72(1):78–82

    Article  CAS  PubMed  Google Scholar 

  • Tagil M, Jeppsson C et al (2000) Bone graft incorporation. Effects of osteogenic protein-1 and impaction. Clin Orthop Relat Res 371:240–245

    Article  PubMed  Google Scholar 

  • Tagil M, Jeppsson C et al (2003) No augmentation of morselized and impacted bone graft by OP-1 in a weight-bearing model. Acta Orthop Scand 74(6):742–748

    Article  PubMed  Google Scholar 

  • Thompson RC Jr, Pickvance EA et al (1993) Fractures in large-segment allografts. J Bone Joint Surg Am 75(11):1663–1673

    PubMed  Google Scholar 

  • Thoren K, Aspenberg P (1995) Increased bone ingrowth distance into lipid-extracted bank bone at 6 weeks. A titanium chamber study in allogeneic and syngeneic rats. Arch Orthop Trauma Surg 114(3):167–171

    Article  CAS  PubMed  Google Scholar 

  • Thoren K, Aspenberg P et al (1993) Lipid extraction decreases the specific immunologic response to bone allografts in rabbits. Acta Orthop Scand 64(1):44–46

    Article  CAS  PubMed  Google Scholar 

  • Thoren K, Aspenberg P et al (1995) Lipid extracted bank bone. Bone conductive and mechanical properties. Clin Orthop Relat Res 311:232–246

    PubMed  Google Scholar 

  • Toms AD, Barker RL et al (2004) Impaction bone-grafting in revision joint replacement surgery. J Bone Joint Surg Am 86-A(9):2050–2060

    PubMed  Google Scholar 

  • Ullmark G (2000) Bigger size and defatting of bone chips will increase cup stability. Arch Orthop Trauma Surg 120(7–8):445–447

    Article  CAS  PubMed  Google Scholar 

  • Ullmark G, Linder L (1998) Histology of the femur after cancellous impaction grafting using a Charnley prosthesis. Arch Orthop Trauma Surg 117(3):170–172

    Article  CAS  PubMed  Google Scholar 

  • Ullmark G, Nilsson O (1999) Impacted corticocancellous allografts: recoil and strength. J Arthroplasty 14(8):1019–1023

    Article  CAS  PubMed  Google Scholar 

  • Ullmark G, Obrant KJ (2002) Histology of impacted bone-graft incorporation. J Arthroplasty 17(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • van Biezen FC, ten Have BL et al (2000) Impaction bone-grafting of severely defective femora in revision total hip surgery: 21 hips followed for 41–85 months. Acta Orthop Scand 71(2):135–142

    Article  PubMed  Google Scholar 

  • Van der Donk S, Buma P et al (2002) Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res 396:131–141

    Article  PubMed  Google Scholar 

  • van der Donk S, Weernink T et al (2003) Rinsing morselized allografts improves bone and tissue ingrowth. Clin Orthop Relat Res 408:302–310

    Article  PubMed  Google Scholar 

  • Van Meerkeren J (1668) Heel- en geneeskundige aanmerkingen. Commelinjn, Amsterdam

    Google Scholar 

  • van Unen JMJ, Verdonschot N, Schreurs BW, Huiskes R (1999) The effect of morcellised bone graft size and operation technique on the initial stability of acetabular cups in revision surgery. J Bone Joint Surg Br 81-B:S54

    Google Scholar 

  • Voggenreiter G, Ascherl R et al (1996) Extracorporeal irradiation and incorporation of bone grafts. Autogeneic cortical grafts studied in rats. Acta Orthop Scand 67(6):583–588

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42

    Article  PubMed  Google Scholar 

  • Wheeler DL, Haynie JL et al (2001) Biomechanical evaluation of retrieved massive allografts: preliminary results. Biomed Sci Instrum 37:251–256

    CAS  PubMed  Google Scholar 

  • Winkler H, Kaudela K et al (2006) Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery—one stage revision results. Cell Tissue Bank 7(4):319–323

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Stoiber A et al (2008) One stage uncemented revision of infected total hip replacement using cancellous allograft bone impregnated with antibiotics. J Bone Joint Surg Br 90(12):1580–1584

    Article  CAS  PubMed  Google Scholar 

  • Winter E, Piert M et al (2001) Allogeneic cancellous bone graft and a Burch-Schneider ring for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Am 83-A(6):862–867

    CAS  PubMed  Google Scholar 

  • Wolff J (1986) (translation of the German 1892 edition) “The Law of Bone Remodeling”. Springer, Berlin, Heidelberg, New York

Download references

Acknowledgments

Mr I McNamara gratefully acknowledges the funding support from the Furlong Research Charitable Foundation (FRCF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain R. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, I.R. Impaction bone grafting in revision hip surgery: past, present and future. Cell Tissue Bank 11, 57–73 (2010). https://doi.org/10.1007/s10561-009-9147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-009-9147-y

Keywords

Navigation