Skip to main content
Log in

Theory of Continuous Optimal Set Partitioning Problems as a Universal Mathematical Formalism for Constructing Voronoi Diagrams and Their Generalizations. I. Theoretical Foundations

  • Cybernetics
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

This article considers a method for constructing Voronoi diagrams and their generalizations on the basis of the unified approach that consists of formulating a continuous optimal set partitioning problem with a partition quality criterion that provides appropriate types of Voronoi diagrams and applying the mathematical and algorithmic apparatus to solve such problems. This approach provides the ability not only to construct well-known Voronoi diagrams but also to design new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Voronoi, Collected Works [in Russian], Vol. 2, Izd. Akad. Nauk UkrSSR, Kiev (1952).

    Google Scholar 

  2. A. H. Thiessen, “Precipitation averages for large areas,” Monthly Weather Review, 39, No. 7, 1082–1084 (1911).

    Google Scholar 

  3. F. G. Tóth, “Multiple packing and covering of spheres,” Acta Mathematica Academiae Scientiarum Hungarica, 34, Nos. 1–2, 165–176 (1979).

    Article  MATH  Google Scholar 

  4. S. V. Terekhov, Modeling Thermal and Kinetic Properties of Real Systems [in Russian], Weber, Donetsk (2007).

    Google Scholar 

  5. R. Klein, “Concrete and abstract Voronoi diagrams,” Lecture Notes in Computer Science, 400, Springer (1987).

  6. I. Ya. Akimova, “Application of Voronoi diagrams in combinatorial problems: A survey,” Izv. Akad Nauk SSSR, Tekhn. Kibern., No. 2, 102–109 (1984).

  7. I. Ya. Akimova, “The problem of optimal placement and generalizations of a theorem of Fejes L. Tóth,” Izv. Akad Nauk SSSR, Tekhn. Kibern., No. 2, 224–228 (1982).

  8. F. Preparata and M. Shamos, Computational Geometry: An Introduction [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  9. A. G. Sukharev, Minimax Algorithms in Numerical Analysis [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  10. E. M. Kiseleva and T. F. Stepanchuk, “Choice of optimal coefficients and optimal nodes of quadrature formulas for functional classes given by quasimetrics,” Probl. Upravl. Inf., No. 3, 138–153 (2002).

  11. E. M. Kiseleva, L. I. Lozovskaya, and E. V. Timoshenko, “Solution of continuous problems of optimal covering with spheres using optimal set-partition theory,” Cybernetics and Systems Analysis, 45, No. 3, 421–437 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. S. Brusov and S. A. Piyavskii, “A computational algorithm for optimally covering a plane region," Zh. Vychisl. Mat. Mat. Fiz., 11, No. 2, 304–312 (1971).

    Google Scholar 

  13. L. F. Tóth, Packing in a Plane, on a Sphere, and in a Space [Russian translation], GIFML, Moscow (1958).

    Google Scholar 

  14. L. S. Koryashkina, “Solution to a problem of optimal placement of an industrial enterprise,” in: Collected Scientific Papers on Problems of Applied Mathematics and Mathematical Modeling, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk (1999), pp. 65–69.

    Google Scholar 

  15. H. Ledoux and M. Christopher, “Gold modelling three-dimensional geoscientific fields with the Voronoi diagram and its dual,” International Journal of Geographical Information Science, 22, No. 5, 547–574 (2008).

    Article  Google Scholar 

  16. I. Menelaos and M. Yvinec, “Dynamic additively weighted Voronoi diagrams in 2D,” Technical Report ECG-TR-122201-01, INRIA, Sophia-Antipolis; 10th European Symposium on Algorithms, Sophia Antipolis, France (2002), pp. 586–598.

  17. M. Laver, E. Sergenti, and M. Schilperoord, “Endogenous birth and death of political parties in dynamic party competition,” in: A. Seth, T. Prescott, and J. Bryson (eds.), Modelling Natural Action Selection, Ch. 21, Cambridge Univ. Press, Cambridge (2010).

    Google Scholar 

  18. E. M. Kiseleva and L. S. Koryashkina, Models and Methods for Solving Continuous Problems of Optimal Set Partitioning: Linear, Nonlinear, and Dynamic Problems [in Russian], Naukova Dumka, Kyiv (2013).

    Google Scholar 

  19. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd Edition, Wiley, West Sussex (England) (2000).

    Book  Google Scholar 

  20. F. Aurenhammer and R. Klein, “Voronoi diagrams: A survey of a fundamental geometric data structure,” ACM Computing Surveys, 23, No. 3, 345–405 (1991).

    Article  Google Scholar 

  21. E. M. Kiseleva and N. Z. Shor, Continuous Problems of Optimal Set Partitioning: Theory, Algorithms, and Applications [in Russian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  22. Yoshiaki Ohsawa, “A geometrical solution for quadratic bicriteria location models,” European Journal of Operational Research, 114, 380–388 (1999).

    Article  MATH  Google Scholar 

  23. S. I. Trubin, “Information space mapping with adaptive multiplicatively weighted Voronoi diagrams,” M.S. Thesis, 6, No. 2, 123–138, Oregon State University (2007).

  24. I. Ya. Akimova and A. P. Akimov, “Weighted Voronoi partitions,” Izv. Akad. Nauk SSSR, Tekhn. Kibern., No. 3, 186–190 (1988).

  25. Jooyandeh Mohammadreza, Mohades Ali, and Mirzakhah Maryam, “Uncertain Voronoi diagram,” Information Processing Letters, 109, No. 13, 709–712 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Balzer, “Capacity-constrained Voronoi diagrams in continuous spaces,” in: The International Symposium on Voronoi Diagrams in Science and Engineering (2009).

  27. E. M. Kiseleva, “An algorithm for solving the problem of optimal partitioning under constraints,” Cybernetics, 19, No. 1, 115–120 (1983).

    Google Scholar 

  28. E. Bakolas and P. Tsiotras, “The Zermelo–Voronoi diagram: A dynamic partition problem,” Automatica, 46, No. 12, 2059–2067 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  29. L. B. Hashemi, M. A. Mostafavi, and J. Pouliot, “Dynamic field process simulation within GIS: The Voronoi approach,” in: The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, Vol. XXXVII, Part B2, Beijing (2008), pp. 891–897.

  30. B. Lau, C. Sprunk, and W. Burgard, “Efficient grid-based spatial representations for robot navigation in dynamic environments,” Robotics and Autonomous Systems, 61, No. 10, 1116–1130 (2013).

    Article  Google Scholar 

  31. Kikuo Fujita, Noriyasu Hirokawa, and Tomoya Tachikawa, “Voronoi diagram based cumulative approximation for engineering optimization,” in: AIAA-2000-4919, Department of Computer-Controlled Mechanical Systems, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (2000), pp. 1–11.

  32. T. Nishida, K. Sugihara, and M. Kimura, “Stable marker-particle method for the Voronoi diagram in a flow field,” Journal of Computational and Applied Mathematics, 202, No. 2, 377–391 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Z. Shor, Methods of Minimization of Nondifferentiable Functions and Their Applications [in Russian], Naukova Dumka, Kyiv (1979).

    Google Scholar 

  34. N. Z. Shor, T. A. Bardadym, N. G. Zhurbenko, A. P. Lykhovid, and P. I. Stetsyuk, “Nonsmooth-optimization methods in problems of stochastic programming,” Cybernetics and Systems Analysis, 35, No. 5, 708–720 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Z. Shor and S. I. Stetsenko, Quadratic Extremal Problems and Nondifferentiable Optimization [in Russian], Naukova Dumka, Kyiv (1989).

    Google Scholar 

  36. N. Z. Shor and P. I. Stetsyuk, “Modified r-algorithm to find the global minimum of polynomial functions,” Cybernetics and Systems Analysis, 33, No. 4, 482–497 (1997).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kiseleva.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 3–15, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, E.M., Koriashkina, L.S. Theory of Continuous Optimal Set Partitioning Problems as a Universal Mathematical Formalism for Constructing Voronoi Diagrams and Their Generalizations. I. Theoretical Foundations. Cybern Syst Anal 51, 325–335 (2015). https://doi.org/10.1007/s10559-015-9725-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-015-9725-x

Keywords

Navigation