Skip to main content
Log in

Construction of Weight Functions of the Petrov–Galerkin Method for Convection–Diffusion–Reaction Equations in the Three-Dimensional Case

  • New Tools in Cybernetics, Computer Science, and System Analysis
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A method is proposed for constructing continuous piecewise-polynomial weight functions for the Petrov–Galerkin method in the three-dimensional domain. The form of such functions is determined by a finite number of variable parameters associated with edges of a grid partition. The choice of these parameters allows one to obtain numerical approximations for the original equation without non-physical oscillations with preserving an adequate accuracy. The results of the investigation are illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fletcher, Numerical Methods Based on the Galerkin Method [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  2. H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin–Heidelberg (2008).

    MATH  Google Scholar 

  3. T. P. Fries and H. G. Matthies, A review of Petrov–Galerkin Stabilization Approaches and an Extension to Meshfree Methods, Techn. Univ. Braunschweig, Brunswick (2004).

    Google Scholar 

  4. O. Z. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis, Butterworth–Heinemann, Oxford (2000).

    Google Scholar 

  5. V. S. Deineka, I. V. Sergienko, and V. V. Skopetsky, Mathematical Models and Methods of Solving Problems with Discontinuous Solutions [in Russian], Naukova Dumka, Kyiv (1995).

    Google Scholar 

  6. B. A. Finlayson, Numerical Methods for Problems with Moving Fronts, Ravenna Park Publ. Inc., Seattle (Wash.) (1992).

    Google Scholar 

  7. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  8. Yu. P. Ladikov-Royev and O. K. Cheremnykh, Mathematical Models of Continuous Media [in Russian], Naukova Dumka, Kyiv (2010).

    Google Scholar 

  9. T. J. R. Hughes, G. Scovazzi, and T. E. Tezduyar, “Stabilized methods for compressible flows,” J. Sci. Comput., 43, 343–368 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. John and E. Schmeyer, “Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion,” Comput. Methods Appl. Mech. Eng., 198, 475–494 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., 32, Nos. 1–3, 199–259 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. John and P. Knobloch, “A comparison of spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I: A review,” Comput. Methods Appl. Mech. Eng., 196, 2197–2215 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. J. R. Hughes, L. P. Franca, and G.M. Hulbert, “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations,” Comput. Methods Appl. Mech. Eng., 73, 173–189 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Brezzi and A. Russo, “Choosing bubbles for advection–diffusion problem,” Math. Models Methods Appl. Sci., No 4, 571–587 (1994).

  15. A. Russo, “Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubbles (RFB),” Comput. Methods Appl. Mech. Eng., 195, 1608–1620 (2006).

    Article  MATH  Google Scholar 

  16. T. J. R. Hughes, G. Feijoo, L. Mazzei, and J-B. Quincy, “The variational multiscale method — a paradigm for computational mechanics,” Comput. Methods Appl. Mech. Eng., 166, 3–24 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. T. Zhukov, N. D. Novikova, L. G. Strakhovskaya, R. P. Fedorenko, and O. B. Feodoritova, “Finite superelement method in convection–diffusion problems,” Mat. Modeling, 14, No. 11, 78–92 (2002).

    MathSciNet  MATH  Google Scholar 

  18. M. Braack and E. Burman, “Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method,” SIAM J. Numer. Anal., 43, 2544–2566 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Becker and M. Braack, “A finite element pressure gradient stabilization for the Stokes equations based on local projections,” Calcolo, 28, 173–199 (2001).

    Article  MathSciNet  Google Scholar 

  20. V. John and E. Schmeyer, “On finite element methods for 3d time-dependent convection-diffusion-reaction equations with small diffusion,” in: A. Hegarty, et al. (eds), Proc. BAIL 2008–Boundary and Interior Layers; Lect. Notes Comput. Sci. Eng., 69, Springer, Berlin-Heidelberg (2009), pp. 173–181.

  21. N. N. Salnikov, S. V. Siryk, and I. A. Tereshchenko, “On the construction of a finite-dimensional mathematical model of a convection-diffusion process using the Petrov–Galerkin method,” Probl. Upravl. Inf., No. 3, 94–109 (2010).

  22. S. V. Siryk and N. N. Salnikov, “Numerical integration of the Burgers equation by the Petrov–Galerkin method with adaptive weight functions,” Probl. Upravl. Inf., No. 1, 94–110 (2012).

  23. A. A. Molchanov, S. V. Siryk, and N. N. Salnikov, “Choice of weight functions in the Petrov–Galerkin method for integrating two-dimensional nonlinear Burgers-type equations,” Mat. Mashiny i Sistemy, No. 2, 136–144 (2012).

  24. S. V. Siryk, “Analysis of lumped approximations in the finite-element method for convection-diffusion problems,” Cybernetics and Systems Analysis, 49, No. 5, 774–785 (2013).

    Article  Google Scholar 

  25. L. Segerling, Applied Finite Element Analysis [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  26. B. Stroustrup, The C++ Programming Language (Special Edition) [Russian translation], OOO “Binom-Press,” Moscow (2006).

    Google Scholar 

  27. V. John, M. Roland, T. Mitkova, et al., “Simulations of population balance systems with one internal coordinate using finite element methods,” Chem. Eng. Sci., 64, 733–741 (2009).

    Article  Google Scholar 

  28. T. Knopp, G. Lube, and G. Rapin, “Stabilized finite element methods with shock capturing for advection-diffusion problems,” Comput. Methods Appl. Mech. Eng., 191, 2997–3013 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. M. Skvortsov, “Simple explicit methods for the numerical solution of stiff ordinary differential equations,” Comp. Meth. and Progr., 9, 154–162 (2008).

    Google Scholar 

  30. D. Kuzmin, “Explicit and implicit FEM-FCT algorithms with flux linearization,” J. Comput. Physics, 228, 2517–2534 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. John and J. Novo, “On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations,” J. Comput. Physics, 231, 1570–1586 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Salnikov.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, pp. 173–183, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salnikov, N.N., Siryk, S.V. Construction of Weight Functions of the Petrov–Galerkin Method for Convection–Diffusion–Reaction Equations in the Three-Dimensional Case. Cybern Syst Anal 50, 805–814 (2014). https://doi.org/10.1007/s10559-014-9671-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9671-z

Keywords

Navigation