Skip to main content

Advertisement

Log in

Eicosanoid signaling in carcinogenesis of colorectal cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66, 7–30.

    Google Scholar 

  2. Molodecky, N. A., Soon, I. S., Rabi, D. M., Ghali, W. A., Ferris, M., Chernoff, G., Benchimol, E. I., Panaccione, R., Ghosh, S., Barkema, H. W., & Kaplan, G. G. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 142, 46–54.e42 quiz e30.

    Article  PubMed  Google Scholar 

  3. Hull, M., & Lagergren, J. (2014). Obesity and colorectal cancer. Gut, 63, 205.

    Article  PubMed  Google Scholar 

  4. Wang, W., Zhu, J., Lyu, F., Panigrahy, D., Ferrara, K. W., Hammock, B., & Zhang, G. (2014). Omega-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins & Other Lipid Mediators, 113-115, 13–20.

    Article  CAS  Google Scholar 

  5. Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, G., Kodani, S., & Hammock, B. D. (2014). Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Progress in Lipid Research, 53, 108–123.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10, 181–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 986–1000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chandrasekharan, N. V., Dai, H., Roos, K. L., Evanson, N. K., Tomsik, J., Elton, T. S., & Simmons, D. L. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proceedings of the National Academy of Sciences of the United States of America, 99, 13926–13931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Morteau, O., Morham, S. G., Sellon, R., Dieleman, L. A., Langenbach, R., Smithies, O., & Sartor, R. B. (2000). Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. The Journal of Clinical Investigation, 105, 469–478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ishikawa, T.-o., Oshima, M., & Herschman, H. R. (2011). Cox-2 deletion in myeloid and endothelial cells, but not in epithelial cells, exacerbates murine colitis. Carcinogenesis, 32, 417–426.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka, K., Suemasu, S., Ishihara, T., Tasaka, Y., Arai, Y., & Mizushima, T. (2009). Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. European Journal of Pharmacology, 603, 120–132.

    Article  PubMed  CAS  Google Scholar 

  13. Berg, D. J., Zhang, J., Weinstock, J. V., Ismail, H. F., Earle, K. A., Alila, H., Pamukcu, R., Moore, S., & Lynch, R. G. (2002). Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology, 123, 1527–1542.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29, 781–788.

    Article  PubMed  CAS  Google Scholar 

  15. Sano, H., Kawahito, Y., Wilder, R. L., Hashiramoto, A., Mukai, S., Asai, K., Kimura, S., Kato, H., Kondo, M., & Hla, T. (1995). Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Research, 55, 3785–3789.

    PubMed  CAS  Google Scholar 

  16. Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  17. Pisano, C., Ottaiano, A., Tatangelo, F., Di Bonito, M., Falanga, M., Iaffaioli, V. R., Botti, G., Pignata, S., & Acquaviva, A. M. (2005). Cyclooxygenase-2 expression is associated with increased size in human sporadic colorectal adenomas. Anticancer Research, 25, 2065–2068.

    PubMed  CAS  Google Scholar 

  18. Rahman, M., Selvarajan, K., Hasan, M. R., Chan, A. P., Jin, C., Kim, J., Chan, S. K., Le, N. D., Kim, Y. B., & Tai, I. T. (2012). Inhibition of COX-2 in colon cancer modulates tumor growth and MDR-1 expression to enhance tumor regression in therapy-refractory cancers in vivo. Neoplasia, 14, 624–633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., & Isakson, P. (1997). Distribution of COX-1 and COX-2 in normal and inflamed tissues. Advances in Experimental Medicine and Biology, 400A, 167–170.

    Article  PubMed  CAS  Google Scholar 

  20. Langenbach, R., Morham, S. G., Tiano, H. F., Loftin, C. D., Ghanayem, B. I., Chulada, P. C., Mahler, J. F., Lee, C. A., Goulding, E. H., Kluckman, K. D., Kim, H. S., & Smithies, O. (1995). Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell, 83, 483–492.

    Article  PubMed  CAS  Google Scholar 

  21. Kitamura, T., Itoh, M., Noda, T., Matsuura, M., & Wakabayashi, K. (2004). Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. International Journal of Cancer, 109, 576–580.

    Article  PubMed  CAS  Google Scholar 

  22. Chulada, P. C., Thompson, M. B., Mahler, J. F., Doyle, C. M., Gaul, B. W., Lee, C., Tiano, H. F., Morham, S. G., Smithies, O., & Langenbach, R. (2000). Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Research, 60, 4705–4708.

    PubMed  CAS  Google Scholar 

  23. Rowan, A. J., Lamlum, H., Ilyas, M., Wheeler, J., Straub, J., Papadopoulou, A., Bicknell, D., Bodmer, W. F., & Tomlinson, I. P. (2000). APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proceedings of the National Academy of Sciences of the United States of America, 97, 3352–3357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fearnhead, N. S., Britton, M. P., & Bodmer, W. F. (2001). The ABC of APC. Human Molecular Genetics, 10, 721–733.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson, R. L., & Fleet, J. C. (2013). Animal models of colorectal cancer. Cancer Metastasis Reviews, 32, 39–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F., & Taketo, M. M. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87, 803–809.

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa, T. O., & Herschman, H. R. (2010). Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis, 31, 729–736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Al-Salihi, M. A., Terrece Pearman, A., Doan, T., Reichert, E. C., Rosenberg, D. W., Prescott, S. M., Stafforini, D. M., & Topham, M. K. (2009). Transgenic expression of cyclooxygenase-2 in mouse intestine epithelium is insufficient to initiate tumorigenesis but promotes tumor progression. Cancer Letters, 273, 225–232.

    Article  PubMed  CAS  Google Scholar 

  29. Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122, 518–523.

    PubMed  CAS  Google Scholar 

  30. Li, H., Liu, K., Boardman, L. A., Zhao, Y., Wang, L., Sheng, Y., Oi, N., Limburg, P. J., Bode, A. M., & Dong, Z. (2015). Circulating prostaglandin biosynthesis in colorectal cancer and potential clinical significance. EBioMedicine, 2, 165–171.

    Article  PubMed  Google Scholar 

  31. Shantha Kumara H, M. C., Jang, J. H., Herath, S. A., Kirchoff, D. D., Yan, X., Cekic, V., & Whelan, R. L. Plasma Levels of Prostaglandin E2 (PGE2), A protein with proangiogenic effects, are elevated in colorectal cancer patients. Gastroenterology, 140, S-998.

  32. Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., Das, S. K., Dey, S. K., & DuBois, R. N. (2004). Prostaglandin E (2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6, 285–295.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., Richmond, A., Strieter, R., Dey, S. K., & DuBois, R. N. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203, 941–951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., & Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. International Journal of Cell Biology, 2010, 215158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kawamori, T., Kitamura, T., Watanabe, K., Uchiya, N., Maruyama, T., Narumiya, S., Sugimura, T., & Wakabayashi, K. (2005). Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis, 26, 353–357.

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., Maruyama, T., Kondo, K., Ushikubi, F., Narumiya, S., Sugimura, T., & Wakabayashi, K. (1999). Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Research, 59, 5093–5096.

    PubMed  CAS  Google Scholar 

  38. Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., Maruyama, T., Kondo, K., Narumiya, S., Sugimura, T., & Wakabayashi, K. (2000). Inhibitory effect of a prostaglandin E receptor subtype EP(1) selective antagonist, ONO-8713, on development of azoxymethane-induced aberrant crypt foci in mice. Cancer Letters, 156, 57–61.

    Article  PubMed  CAS  Google Scholar 

  39. Kitamura, T., Itoh, M., Noda, T., Tani, K., Kobayashi, M., Maruyama, T., Kobayashi, K., Ohuchida, S., Sugimura, T., & Wakabayashi, K. (2003). Combined effects of prostaglandin E receptor subtype EP1 and subtype EP4 antagonists on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. Cancer Science, 94, 618–621.

    Article  PubMed  CAS  Google Scholar 

  40. Mutoh, M., Watanabe, K., Kitamura, T., Shoji, Y., Takahashi, M., Kawamori, T., Tani, K., Kobayashi, M., Maruyama, T., Kobayashi, K., Ohuchida, S., Sugimoto, Y., Narumiya, S., Sugimura, T., & Wakabayashi, K. (2002). Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 62, 28–32.

    PubMed  CAS  Google Scholar 

  41. Oshima, M., Murai, N., Kargman, S., Arguello, M., Luk, P., Kwong, E., Taketo, M. M., & Evans, J. F. (2001). Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Research, 61, 1733–1740.

    PubMed  CAS  Google Scholar 

  42. Orner, G. A., Dashwood, W. M., Blum, C. A., Diaz, G. D., Li, Q., & Dashwood, R. H. (2003). Suppression of tumorigenesis in the Apc(min) mouse: down-regulation of beta-catenin signaling by a combination of tea plus sulindac. Carcinogenesis, 24, 263–267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kawamori, T., Rao, C. V., Seibert, K., & Reddy, B. S. (1998). Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Research, 58, 409–412.

    PubMed  CAS  Google Scholar 

  44. Solomon, S. D., McMurray, J. J., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., Anderson, W. F., Zauber, A., Hawk, E., Bertagnolli, M., & Adenoma Prevention with Celecoxib Study, I. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352, 1071–1080.

    Article  PubMed  CAS  Google Scholar 

  45. Burke, C. A., Phillips, R., Berger, M. F., Li, C., Essex, M. N., Iorga, D., & Lynch, P. M. (2017). Children's international polyposis (CHIP) study: a randomized, double-blind, placebo-controlled study of celecoxib in children with familial adenomatous polyposis. Clinical and Experimental Gastroenterology, 10, 177–185.

    Article  PubMed  PubMed Central  Google Scholar 

  46. FitzGerald, G. A. (2004). Coxibs and cardiovascular disease. New England Journal of Medicine, 351, 1709–1711.

    Article  PubMed  CAS  Google Scholar 

  47. Cheng, Y., Austin, S. C., Rocca, B., Koller, B. H., Coffman, T. M., Grosser, T., Lawson, J. A., & FitzGerald, G. A. (2002). Role of prostacyclin in the cardiovascular response to thromboxane a(2). Science, 296, 539–541.

    Article  PubMed  CAS  Google Scholar 

  48. Schmelzer, K. R., Inceoglu, B., Kubala, L., Kim, I. H., Jinks, S. L., Eiserich, J. P., & Hammock, B. D. (2006). Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 103, 13646–13651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, J. Y., Li, N., Yang, J., Qiu, H., Ai, D., Chiamvimonvat, N., Zhu, Y., & Hammock, B. D. (2010). Metabolic profiling of murine plasma reveals an unexpected biomarker in rofecoxib-mediated cardiovascular events. Proceedings of the National Academy of Sciences of the United States of America, 107, 17017–17022.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gudis, K., Tatsuguchi, A., Wada, K., Futagami, S., Nagata, K., Hiratsuka, T., Shinji, Y., Miyake, K., Tsukui, T., Fukuda, Y., & Sakamoto, C. (2005). Microsomal prostaglandin E synthase (mPGES)-1, mPGES-2 and cytosolic PGES expression in human gastritis and gastric ulcer tissue. Laboratory Investigation; a Journal of Technical Methods and Pathology, 85, 225–236.

    Article  PubMed  CAS  Google Scholar 

  51. Jakobsson, P. J., Thoren, S., Morgenstern, R., & Samuelsson, B. (1999). Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences of the United States of America, 96, 7220–7225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yoshimatsu, K., Golijanin, D., Paty, P. B., Soslow, R. A., Jakobsson, P. J., DeLellis, R. A., Subbaramaiah, K., & Dannenberg, A. J. (2001). Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7, 3971–3976.

    CAS  Google Scholar 

  53. Kamei, D., Murakami, M., Nakatani, Y., Ishikawa, Y., Ishii, T., & Kudo, I. (2003). Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. The Journal of Biological Chemistry, 278, 19396–19405.

    Article  PubMed  CAS  Google Scholar 

  54. Nakanishi, M., Montrose, D. C., Clark, P., Nambiar, P. R., Belinsky, G. S., Claffey, K. P., Xu, D., & Rosenberg, D. W. (2008). Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Research, 68, 3251–3259.

    Article  PubMed  CAS  Google Scholar 

  55. Chu, J., Lloyd, F. L., Trifan, O. C., Knapp, B., & Rizzo, M. T. (2003). Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer. Molecular Cancer Therapeutics, 2, 1–7.

    Article  PubMed  CAS  Google Scholar 

  56. Finetti, F., Terzuoli, E., Bocci, E., Coletta, I., Polenzani, L., Mangano, G., Alisi, M. A., Cazzolla, N., Giachetti, A., Ziche, M., & Donnini, S. (2012). Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis. PLoS One, 7, e40576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Finetti, F., Terzuoli, E., Giachetti, A., Santi, R., Villari, D., Hanaka, H., Radmark, O., Ziche, M., & Donnini, S. (2015). mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity. Endocrine-Related Cancer, 22, 665–678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Xu, D., Rowland, S. E., Clark, P., Giroux, A., Cote, B., Guiral, S., Salem, M., Ducharme, Y., Friesen, R. W., Methot, N., Mancini, J., Audoly, L., & Riendeau, D. (2008). MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. The Journal of Pharmacology and Experimental Therapeutics, 326, 754–763.

    Article  PubMed  CAS  Google Scholar 

  59. Murakami, M., Nakashima, K., Kamei, D., Masuda, S., Ishikawa, Y., Ishii, T., Ohmiya, Y., Watanabe, K., & Kudo, I. (2003). Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. The Journal of Biological Chemistry, 278, 37937–37947.

    Article  PubMed  CAS  Google Scholar 

  60. Tanikawa, N., Ohmiya, Y., Ohkubo, H., Hashimoto, K., Kangawa, K., Kojima, M., Ito, S., & Watanabe, K. (2002). Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochemical and Biophysical Research Communications, 291, 884–889.

    Article  PubMed  CAS  Google Scholar 

  61. Jania, L. A., Chandrasekharan, S., Backlund, M. G., Foley, N. A., Snouwaert, J., Wang, I. M., Clark, P., Audoly, L. P., & Koller, B. H. (2009). Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis. Prostaglandins & Other Lipid Mediators, 88, 73–81.

    Article  CAS  Google Scholar 

  62. Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. The Journal of Biological Chemistry, 275, 32775–32782.

    Article  PubMed  CAS  Google Scholar 

  63. Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., & Murakami, M. (2010). Prostaglandin E synthases: Understanding their pathophysiological roles through mouse genetic models. Biochimie, 92, 651–659.

    Article  PubMed  CAS  Google Scholar 

  64. Kuhn, H., Banthiya, S., & van Leyen, K. (2015). Mammalian lipoxygenases and their biological relevance. Biochimica et Biophysica Acta, 1851, 308–330.

    Article  PubMed  CAS  Google Scholar 

  65. Mashima, R., & Okuyama, T. (2015). The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biology, 6, 297–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. The Journal of Biological Chemistry, 274, 23679–23682.

    Article  PubMed  CAS  Google Scholar 

  67. Il Lee, S., Zuo, X., & Shureiqi, I. (2011). 15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: Is the verdict in? Cancer Metastasis Reviews, 30, 481–491.

    Article  PubMed  CAS  Google Scholar 

  68. Shureiqi, I., Wu, Y., Chen, D., Yang, X. L., Guan, B., Morris, J. S., Yang, P., Newman, R. A., Broaddus, R., Hamilton, S. R., Lynch, P., Levin, B., Fischer, S. M., & Lippman, S. M. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Heslin, M. J., Hawkins, A., Boedefeld, W., Arnoletti, J. P., Frolov, A., Soong, R., Urist, M. M., & Bland, K. I. (2005). Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Annals of Surgery, 241, 941–946 discussion 946-947.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen, G. G., Xu, H., Lee, J. F., Subramaniam, M., Leung, K. L., Wang, S. H., Chan, U. P., & Spelsberg, T. C. (2003). 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. International Journal of Cancer. Journal International du Cancer, 107, 837–843.

    Article  PubMed  CAS  Google Scholar 

  71. Shureiqi, I., Chen, D., Day, R. S., Zuo, X., Hochman, F. L., Ross, W. A., Cole, R. A., Moy, O., Morris, J. S., Xiao, L., Newman, R. A., Yang, P., & Lippman, S. M. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prevention Research (Philadelphia, Pa.), 3, 829–838.

    Article  CAS  Google Scholar 

  72. Zuo, X., Peng, Z., Wu, Y., Moussalli, M. J., Yang, X. L., Wang, Y., Parker-Thornburg, J., Morris, J. S., Broaddus, R. R., Fischer, S. M., & Shureiqi, I. (2012). Effects of gut-targeted 15-LOX-1 transgene expression on colonic tumorigenesis in mice. Journal of the National Cancer Institute, 104, 709–716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhu, H., Glasgow, W., George, M. D., Chrysovergis, K., Olden, K., Roberts, J. D., & Eling, T. (2008). 15-lipoxygenase-1 activates tumor suppressor p53 independent of enzymatic activity. International Journal of Cancer, 123, 2741–2749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Shureiqi, I., Jiang, W., Zuo, X., Wu, Y., Stimmel, J. B., Leesnitzer, L. M., Morris, J. S., Fan, H. Z., Fischer, S. M., & Lippman, S. M. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tan, W., Wu, J., Zhang, X., Guo, Y., Liu, J., Sun, T., Zhang, B., Zhao, D., Yang, M., Yu, D., & Lin, D. (2007). Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. Carcinogenesis, 28, 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  76. Klampfl, T., Bogner, E., Bednar, W., Mager, L., Massudom, D., Kalny, I., Heinzle, C., Berger, W., Stattner, S., Karner, J., Klimpfinger, M., Furstenberger, G., Krieg, P., & Marian, B. (2012). Up-regulation of 12(S)-lipoxygenase induces a migratory phenotype in colorectal cancer cells. Experimental Cell Research, 318, 768–778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Stadler, S., Nguyen, C. H., Schachner, H., Milovanovic, D., Holzner, S., Brenner, S., Eichsteininger, J., Stadler, M., Senfter, D., Krenn, L., Schmidt, W. M., Huttary, N., Krieger, S., Koperek, O., Bago-Horvath, Z., Brendel, K. A., Marian, B., de Wever, O., Mader, R. M., Giessrigl, B., Jager, W., Dolznig, H., & Krupitza, G. (2017). Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca(2+) signalling. Cellular and Molecular Life Sciences: CMLS, 74, 1907–1921.

    Article  PubMed  CAS  Google Scholar 

  78. Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., Rao, S. M., Witt, R. C., Ternent, C. A., Talamonti, M. S., Bell, R. H., & Adrian, T. A. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14, 6525–6530.

    Article  CAS  Google Scholar 

  79. Cheon, E. C., Khazaie, K., Khan, M. W., Strouch, M. J., Krantz, S. B., Phillips, J., Blatner, N. R., Hix, L. M., Zhang, M., Dennis, K. L., Salabat, M. R., Heiferman, M., Grippo, P. J., Munshi, H. G., Gounaris, E., & Bentrem, D. J. (2011). Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Research, 71, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  80. Rao, C. V., Rivenson, A., Simi, B., & Reddy, B. S. (1995). Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Research, 55, 259–266.

    PubMed  CAS  Google Scholar 

  81. Rao, C. V., Janakiram, N. B., & Mohammed, A. (2012). Lipoxygenase and cyclooxygenase pathways and colorectal cancer prevention. Current Colorectal Cancer Reports, 8, 316–324.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Soumaoro, L. T., Iida, S., Uetake, H., Ishiguro, M., Takagi, Y., Higuchi, T., Yasuno, M., Enomoto, M., & Sugihara, K. (2006). Expression of 5-lipoxygenase in human colorectal cancer. World Journal of Gastroenterology, 12, 6355–6360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kim, J. H., Tagari, P., Griffiths, A. M., Ford-Hutchinson, A., Smith, C., & Sherman, P. M. (1995). Levels of peptidoleukotriene E4 are elevated in active Crohn’s disease. Journal of Pediatric Gastroenterology and Nutrition, 20, 403–407.

    Article  PubMed  CAS  Google Scholar 

  84. Sharon, P., & Stenson, W. F. (1984). Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology, 86, 453–460.

    PubMed  CAS  Google Scholar 

  85. Cheon, E. C., Strouch, M. J., Krantz, S. B., Heiferman, M. J., & Bentrem, D. J. (2012). Genetic deletion of 5-lipoxygenase increases tumor-infiltrating macrophages in Apc(Delta468) mice. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract, 16, 389–393.

    Article  Google Scholar 

  86. Sirois, P., Borgeat, P., Lauziere, M., Dube, L., Rubin, P., & Kesterson, J. (1991). Effect of Zileuton (A-64077) on the 5-lipoxygenase activity of human whole blood ex vivo. Agents and Actions, 34, 117–120.

    Article  PubMed  CAS  Google Scholar 

  87. Gounaris, E., Heiferman, M. J., Heiferman, J. R., Shrivastav, M., Vitello, D., Blatner, N. R., Knab, L. M., Phillips, J. D., Cheon, E. C., Grippo, P. J., Khazaie, K., Munshi, H. G., & Bentrem, D. J. (2015). Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation. PLoS One, 10, e0121402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bellamkonda, K., Chandrashekar, N. K., Osman, J., Selvanesan, B. C., Savari, S., & Sjolander, A. (2016). The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer, 16, 425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Salim, T., Sand-Dejmek, J., & Sjolander, A. (2014). The inflammatory mediator leukotriene D(4) induces subcellular beta-catenin translocation and migration of colon cancer cells. Experimental Cell Research, 321, 255–266.

    Article  PubMed  CAS  Google Scholar 

  90. Chiu, C. H., McEntee, M. F., & Whelan, J. (1997). Sulindac causes rapid regression of preexisting tumors in min/+ mice independent of prostaglandin biosynthesis. Cancer Research, 57, 4267–4273.

    PubMed  CAS  Google Scholar 

  91. Bortuzzo, C., Hanif, R., Kashfi, K., Staiano-Coico, L., Shiff, S. J., & Rigas, B. (1996). The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochimica et Biophysica Acta, 1300, 240–246.

    Article  PubMed  Google Scholar 

  92. Lynch, K. R., O'Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., Coulombe, N., Abramovitz, M., Figueroa, D. J., Zeng, Z., Connolly, B. M., Bai, C., Austin, C. P., Chateauneuf, A., Stocco, R., Greig, G. M., Kargman, S., Hooks, S. B., Hosfield, E., Williams Jr., D. L., Ford-Hutchinson, A. W., Caskey, C. T., & Evans, J. F. (1999). Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 399, 789–793.

    Article  PubMed  CAS  Google Scholar 

  93. Heise, C. E., O'Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., Williams Jr., D. L., Zeng, Z., Liu, Q., Ma, L., Clements, M. K., Coulombe, N., Liu, Y., Austin, C. P., George, S. R., O'Neill, G. P., Metters, K. M., Lynch, K. R., & Evans, J. F. (2000). Characterization of the human cysteinyl leukotriene 2 receptor. The Journal of Biological Chemistry, 275, 30531–30536.

    Article  PubMed  CAS  Google Scholar 

  94. Ohd, J. F., Nielsen, C. K., Campbell, J., Landberg, G., Lofberg, H., & Sjolander, A. (2003). Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology, 124, 57–70.

    Article  PubMed  CAS  Google Scholar 

  95. Magnusson, C., Mezhybovska, M., Lorinc, E., Fernebro, E., Nilbert, M., & Sjolander, A. (2010). Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. European Journal of Cancer, 46, 826–835.

    Article  PubMed  CAS  Google Scholar 

  96. Savari, S., Chandrashekar, N. K., Osman, J., Douglas, D., Bellamkonda, K., Jonsson, G., Juhas, M., Greicius, G., Pettersson, S., & Sjolander, A. (2016). Cysteinyl leukotriene 1 receptor influences intestinal polyp incidence in a gender-specific manner in the ApcMin/+ mouse model. Carcinogenesis, 37, 491–499.

    Article  PubMed  CAS  Google Scholar 

  97. Osman, J., Savari, S., Chandrashekar, N. K., Bellamkonda, K., Douglas, D., & Sjolander, A. (2017). Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget, 8, 34773–34786.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kundu, S., Roome, T., Bhattacharjee, A., Carnevale, K. A., Yakubenko, V. P., Zhang, R., Hwang, S. H., Hammock, B. D., & Cathcart, M. K. (2013). Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo. Journal of Lipid Research, 54, 436–447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lazaar, A. L., Yang, L., Boardley, R. L., Goyal, N. S., Robertson, J., Baldwin, S. J., Newby, D. E., Wilkinson, I. B., Tal-Singer, R., Mayer, R. J., & Cheriyan, J. (2016). Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. British Journal of Clinical Pharmacology, 81, 971–979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. McReynolds, C., Schmidt, W. K., Wagner, K., & Hammock, B. D. (2016). Advancing soluble epoxide hydrolase inhibitors through the valley of death into phase 1 clinical trials for treating painful diabetic neuropathy by utilizing university partnerships, collaborations, and NIH Support. The FASEB Journal, 30, 1272–1276.

    Google Scholar 

  101. Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37, 133–141.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang, W., Li, H., Dong, H., Liao, J., Hammock, B. D., & Yang, G. Y. (2013). Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice. Anticancer Research, 33, 5261–5271.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhang, W., Yang, A. L., Liao, J., Li, H., Dong, H., Chung, Y. T., Bai, H., Matkowskyj, K. A., Hammock, B. D., & Yang, G. Y. (2012). Soluble epoxide hydrolase gene deficiency or inhibition attenuates chronic active inflammatory bowel disease in IL-10(−/−) mice. Digestive Diseases and Sciences, 57, 2580–2591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang, W., Liao, J., Li, H., Dong, H., Bai, H., Yang, A., Hammock, B. D., & Yang, G. Y. (2013). Reduction of inflammatory bowel disease-induced tumor development in IL-10 knockout mice with soluble epoxide hydrolase gene deficiency. Molecular Carcinogenesis, 52, 726–738.

    Article  PubMed  CAS  Google Scholar 

  105. Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnes, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Yang, J., Schwendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D'Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122, 178–191.

    Article  PubMed  CAS  Google Scholar 

  106. Ogden, C. L., Carroll, M. D., Fryar, C. D., & Flegal, K. M. (2015). Prevalence of obesity among adults and youth: United States, 2011-2014. NCHS Data Brief, 1–8.

  107. Moghaddam, A. A., Woodward, M., & Huxley, R. (2007). Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiology, Biomarkers & Prevention, 16, 2533–2547.

    Article  Google Scholar 

  108. Roberts, D. L., Dive, C., & Renehan, A. G. (2010). Biological mechanisms linking obesity and cancer risk: new perspectives. Annual Review of Medicine, 61, 301–316.

    Article  PubMed  CAS  Google Scholar 

  109. Terzic, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138, 2101–2114 e2105.

    Article  PubMed  CAS  Google Scholar 

  110. Najdi, R., Holcombe, R. F., & Waterman, M. L. (2011). Wnt signaling and colon carcinogenesis: beyond APC. Journal of Carcinogenesis, 10, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Movahedi, M., Bishop, D. T., Macrae, F., Mecklin, J.-P., Moeslein, G., Olschwang, S., Eccles, D., Evans, D. G., Maher, E. R., Bertario, L., Bisgaard, M.-L., Dunlop, M. G., Ho, J. W. C., Hodgson, S. V., Lindblom, A., Lubinski, J., Morrison, P. J., Murday, V., Ramesar, R. S., Side, L., Scott, R. J., Thomas, H. J. W., Vasen, H. F., Burn, J., & Mathers, J. C. (2015). Obesity, aspirin, and risk of colorectal cancer in carriers of hereditary colorectal cancer: a prospective investigation in the CAPP2 study. Journal of Clinical Oncology, 33, 3591–3597.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang, G., Panigrahy, D., Hwang, S. H., Yang, J., Mahakian, L. M., Wettersten, H. I., Liu, J. Y., Wang, Y., Ingham, E. S., Tam, S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2014). Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 111, 11127–11132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Cathcart, M. C., Lysaght, J., & Pidgeon, G. P. (2011). Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention. Cancer Metastasis Reviews, 30, 363–385.

    Article  PubMed  CAS  Google Scholar 

  114. Wang,W., Yang, J., Zhang, J., Wang, Y., Hwang, S. H., Qi, W., Wan, D., Kim, D., Sun, J., Sanidad, K. Z., Yang, H., Park, Y., Liu, J.-Y., Zhao, X., Zheng, X., Liu, Z., Hammock, B. D., & Zhang, G. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proceedings of the National Academy of Sciences, 115(20), 5283-5288.

    Article  Google Scholar 

Download references

Funding

We thank funding support from NIH/NCI R03CA218520 and USDA NIFA 2016-67017-24416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, W., Sanidad, K.Z. et al. Eicosanoid signaling in carcinogenesis of colorectal cancer. Cancer Metastasis Rev 37, 257–267 (2018). https://doi.org/10.1007/s10555-018-9739-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9739-8

Keywords

Navigation