Skip to main content

Advertisement

Log in

Lipoxygenase and Cyclooxygenase Pathways and Colorectal Cancer Prevention

  • Molecular Biology (S Anant, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer is one of the commonest malignancies in both men and women. In spite of significant progress in screening and in surgical and therapeutic interventions, colorectal cancer (CRC) is still a major public health problem. Accumulating evidence suggests that targeting inflammatory pathways may provide protection against the development of CRC. Eicosanoids derived from the enzymes cyclooxygenase (COX) and lipoxygenase (LOX) may contribute to CRC carcinogenesis. Approaches for targeting COX-1 and COX-2 with traditional nonsteroidal anti-inflammatory agents or targeting COX-2 with specific inhibitors are highly successful at the preclinical and clinical levels; however, large-scale clinical applicability of these agents is limited owing to unwanted side effects. Emerging studies suggests that 5-LOX-derived leukotrienes may contribute to colon tumor development and risk of thrombotic events. Thus, developing drugs that target both 5-LOX and COX-2 may provide a safer strategy. In this review, we discuss evidence for the involvement of 5-LOX in colon tumor development and targeting 5-LOX and COX-2 with synthetic and naturally occurring agents for CRC prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer facts and figures 2011 Atlanta; 2011.

  2. Potter JD. Nutrition and colorectal cancer. Cancer Causes Control. 1996;7:127–46.

    Article  PubMed  CAS  Google Scholar 

  3. Correa P, Haenszel W. The epidemiology of large bowel cancer. Adv Cancer Res. 1978;26:1–141.

    Article  PubMed  CAS  Google Scholar 

  4. Wynder EL, Kajitani T, Ishikawa S, et al. Environmental factors in cancer of colon and rectum. Cancer. 1969;23:1210–20.

    Article  PubMed  CAS  Google Scholar 

  5. Reddy BS. Diet and colon cancer: evidence from human and animal model studies. In: Reddy BS, Cohen LA, editors. Diet, nutrition and cancer: a critical evaluation, vol. 47. Boca Raton: CRC; 1986.

    Google Scholar 

  6. Giovannucci E, Willett WC. Dietary factors and risk of colon cancer. Ann Med. 1995;26:443–52.

    Article  Google Scholar 

  7. Sporn MB, Suh N. Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer. 2002;2:537–43.

    Article  PubMed  CAS  Google Scholar 

  8. Wattenberg LW. An interlocker concept of carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2006;15:1425–6.

    Article  PubMed  CAS  Google Scholar 

  9. Lippman SM, Hong WK. Cancer prevention science and practice. Cancer Res. 2002;62:5119–25.

    PubMed  CAS  Google Scholar 

  10. Hong WK, Sporn MB. Recent advance in chemoprevention of cancer. Science. 1997;278:1073–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer. 2006;6:130–40.

    Article  PubMed  CAS  Google Scholar 

  12. Reddy BS, Rao CV. Novel approaches for colon cancer prevention by cyclooxygenase-2 inhibitors. J Environ Pathol Toxicol Oncol. 2002;21:155–64.

    Article  PubMed  CAS  Google Scholar 

  13. Rao CV. NSAIDs and chemoprevention-review. Curr Cancer Drug Targets. 2004;4:29–42.

    Article  PubMed  CAS  Google Scholar 

  14. Rao CV, Rivenson A, Simi B, et al. Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res. 1995;55:1464–72.

    PubMed  CAS  Google Scholar 

  15. DuBois RN, Radhika A, Reddy BS, Entingh AJ. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology. 1996;110:1259–62.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy BS, Hirose Y, Lubet R, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res. 2000;60:293–7.

    PubMed  CAS  Google Scholar 

  17. Bertagnolli MM, Eagle CJ, Zauber AG, et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res. 2009;2(4):285–7.

    Article  Google Scholar 

  18. Thun MJ, Namboodiri MM, Heath Jr CW. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 1991;325:1593–6.

    Article  PubMed  CAS  Google Scholar 

  19. Chan AT, Arber N, Burn J, et al. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res. 2012;5(2):164–78.

    Article  CAS  Google Scholar 

  20. Reddy BS, Wang CX, Kong AN, et al. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res. 2006;66:4542–6.

    Article  PubMed  CAS  Google Scholar 

  21. Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50.

    Article  PubMed  CAS  Google Scholar 

  22. Reddy BS, Rao CV, Rivenson A, Kelloff G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis. 1993;14(8):1493–7.

    Article  PubMed  CAS  Google Scholar 

  23. Reddy BS, Hirsoe Y, Lubet R, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res. 2000;60:293–7.

    PubMed  CAS  Google Scholar 

  24. Reddy BS, Rao CV, Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res. 1996;56:4566–9.

    PubMed  CAS  Google Scholar 

  25. Rao CV, Reddy BS. NSAIDs and chemoprevention. Curr Cancer Drug Targets. 2004;4:29–42.

    Article  PubMed  CAS  Google Scholar 

  26. Steinbach G, Lynch PM, Phillips RKS, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52.

    Article  PubMed  CAS  Google Scholar 

  27. Bertagnolli MM, Eagle CJ, Zauber AG, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.

    Article  PubMed  CAS  Google Scholar 

  28. Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352:1092–102.

    Article  PubMed  CAS  Google Scholar 

  29. Solomon DS, McMurray JJV, Pfeffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352:1071–80.

    Article  PubMed  CAS  Google Scholar 

  30. White WB, Faich G, Borer JS, Makuch RW. Cardiovascular thrombotic events in arthritis trials of the celecoxib. Am J Cardiol. 2003;92:411–8.

    Article  PubMed  CAS  Google Scholar 

  31. Hong SH, Avis I, Vos MD, et al. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res. 1999;59:2223–8.

    PubMed  CAS  Google Scholar 

  32. Avis I, Hong SH, Martinez A, et al. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J. 2001;15:2007–9.

    PubMed  CAS  Google Scholar 

  33. Shureiqi I, Lippman SM. Lipoxygenase modulation of reverse carcinogenesis. Cancer Res. 2001;61:6307–12.

    PubMed  CAS  Google Scholar 

  34. Ohd JF, Nielsen CK, Campbell J, et al. Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology. 2003;124:57–70.

    Article  PubMed  CAS  Google Scholar 

  35. Avis IM, Jett M, Boyle T, et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest. 1996;97:806–13.

    Article  PubMed  CAS  Google Scholar 

  36. Kargman S, Vickers PJ, Evans JF. A23187 induces translocation of 5-lipoxygenase in osteosarcoma cells. J Cell Biol. 1992;119:1701–9.

    Article  PubMed  CAS  Google Scholar 

  37. Boado RJ, Pardridge WM, Vinters HV, Black KL. Differential expression of arachidonate 5-lipoxygenase transcripts in human brain tumors: evidence for the expression of a multitranscript family. Proc Natl Acad Sci USA. 1992;89:9044–8.

    Article  PubMed  CAS  Google Scholar 

  38. Hennig R, Ding XZ, Tong WG, et al. 5-Lipoxygenase and leukotriene B[4] receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol. 2002;161:421–8.

    Article  PubMed  CAS  Google Scholar 

  39. Romano M, Catalano A, Nutini M, et al. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J. 2001;15:2326–36.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta S, Srivastava M, Ahmad N, et al. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer. 2001;91:737–74.

    Article  PubMed  CAS  Google Scholar 

  41. Oshima M, Dinchuck JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase-2. Cell. 1996;87:803–9.

    Article  PubMed  CAS  Google Scholar 

  42. Taketo MM. COX-2 and colon cancer. Inflamm Res. 1998;47S:S112–6.

    Article  Google Scholar 

  43. Ding XZ, Iversen P, Cluck MW, et al. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun. 1999;261:218–23.

    Article  PubMed  CAS  Google Scholar 

  44. Hussey HJ, Tisdale M. Effect of polyunsaturated fatty acids on the growth of murine colon adenocarcinomas in vitro and in vivo. Br J Cancer. 1994;70:6–10.

    Article  PubMed  CAS  Google Scholar 

  45. Hussey HJ, Tisdale MJ. Novel anti-tumor activity of 2,3,5-trimethyl-6-[3-pyridylmethyl]-1,4-benzoquinone [CV-6504] against established murine adenocarcinomas [MAC]. Br J Cancer. 1996;73:1187–92.

    Article  PubMed  CAS  Google Scholar 

  46. Hebert MJ, Takano T, Holthofer H, Brady HR. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J Immunol. 1996;157:3105–15.

    PubMed  CAS  Google Scholar 

  47. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 1993;122:518–23.

    PubMed  CAS  Google Scholar 

  48. Rao CV, Rivenson A, Simi B, Reddy BS. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 1995;55:259–66.

    PubMed  CAS  Google Scholar 

  49. Rao CV, Desai D, Rivenson A, et al. Chemoprevention of colon carcinogenesis by phenylethyl-3-methyl caffeate. Cancer Res. 1995;55:2310–5.

    PubMed  CAS  Google Scholar 

  50. Shimizu T, Izumi T, Seyama Y, et al. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci USA. 1986;83:4175–9.

    Article  PubMed  CAS  Google Scholar 

  51. Dixon RA, Diehl RE, Opas E, et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990;343:282–4.

    Article  PubMed  CAS  Google Scholar 

  52. Peters-Golden M. Cell biology of the 5-lipoxygenase pathway. Am J Respir Crit Care Med. 1998;157:S227–31.

    CAS  Google Scholar 

  53. Swamy MS, Herzog CR, Rao CV. Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res. 2003;63:5239–42.

    PubMed  CAS  Google Scholar 

  54. Chen XS, Sheller JR, Johnson EN, Funk CD. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature. 1994;372:179–82.

    Article  PubMed  CAS  Google Scholar 

  55. Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway: biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990;323:645–55.

    Article  PubMed  CAS  Google Scholar 

  56. Caterna RD, Zampolli A. From asthma to atherosclerosis- 5-lipoxynase, leukotrienes and inflammation. N Engl J Med. 2004;350:4–7.

    Article  Google Scholar 

  57. Huang L, Zhao A, Wong F, et al. Lekotrine B4 strongly increases monocyte chemoattractant protein-1 in human monocytes. Arteriosclar Thromb Vasc Biol. 2004;24:1783–8.

    Article  CAS  Google Scholar 

  58. Soberman RJ, Christmas P. The organization and consequences of eicosanoid signaling. J Clin Invest. 2003;111:1107–13.

    PubMed  CAS  Google Scholar 

  59. Radmark OP. The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med. 2000;161:S11–5.

    PubMed  CAS  Google Scholar 

  60. Miller DK, Gillard JW, Vickers PJ, et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990;343:278–81.

    Article  PubMed  CAS  Google Scholar 

  61. Bray MA, Ford-Hutchinson AW. Smith M.J. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins. 1981;22:213–22.

    Article  PubMed  CAS  Google Scholar 

  62. Smith MJ, Ford-Hutchinson AW, Bray MA. Leukotriene B: a potential mediator of inflammation. J Pharm Pharmacol. 1980;32:517–8.

    Article  PubMed  CAS  Google Scholar 

  63. Lewis RA, Ansten KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 2000;192:439–46.

    Google Scholar 

  64. Sala A, Folco G. Neutrophils, endothelial cells, and cysteinyl leukotrienes: a new approach to neutrophil-dependent inflammation? Biochem Biophys Res Commun. 2001;283:1003–66.

    Article  PubMed  CAS  Google Scholar 

  65. Rainsford KD, Ying C, Smith F. Effects of 5-lipoxygenase inhibitors on interleukin production by human synovial tissues in organ culture: comparison with interleukin-1-synthesis inhibitors. J Pharm Pharmacol. 1996;48:46–52.

    Article  PubMed  CAS  Google Scholar 

  66. Sala A, Rossoni G, Buccellati C, et al. Formation of sulphidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused heart of rabbit. Br J Pharmacol. 1993;110:1206–12.

    Article  PubMed  CAS  Google Scholar 

  67. Mehrabian M, Allayee H. 5-Lipoxygenanse and arthrosclerosis. Cur Opin Lipidol. 2003;14:447–57.

    Article  CAS  Google Scholar 

  68. Antman EM, DeMets D, Loscalzo J. Cyclooxygenase inhibition and cardiovascular risk. Circulation. 2005;112:759–70.

    Article  PubMed  CAS  Google Scholar 

  69. Jala VR, Haribabu B. Leukotrienes and atherosclerosis: new roles for old mediators. Trends Immunol. 2004;25:315–22.

    Article  PubMed  CAS  Google Scholar 

  70. Helgadottir A, Manolescu A, Thorleifssonet G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;36:233–9.

    Article  PubMed  CAS  Google Scholar 

  71. Weir MR, Sperling RS, Reicin A, Gertz BJ. Selective COX-2 inhibition and cardiovascular effects: a review of the rofecoxib development program. Am Heart J. 2003;146:591–604.

    Article  PubMed  CAS  Google Scholar 

  72. Borgdorff P, Tangelder GJ, Paulus WJ. Cyclooxygenase-2 inhibitors enhance shear stress-induced platelet aggregation. J Am Coll Cardiol. 2006;48:817–23.

    Article  PubMed  CAS  Google Scholar 

  73. Dale GL, Friese P, Batar P, et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 2002;415:175–9.

    Article  PubMed  CAS  Google Scholar 

  74. Dale GL. Coated-platelets: an emerging component of the procoagulant response. J Thromb Haemost. 2005;3:2185–92.

    Article  PubMed  CAS  Google Scholar 

  75. Brooks MB, Catalfamo JL, Friese P, Dale GL. Scott syndrome dogs have impaired coated-platelet formation and calcein-release but normal mitochondrial depolarization. J Thromb Haemost. 2007;5:1972–4.

    Article  PubMed  CAS  Google Scholar 

  76. Brooks MB, Catalfamo JL, Brown HA, et al. A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity. Blood. 2002;99:2434–41.

    Article  PubMed  CAS  Google Scholar 

  77. Rashid A, Dale GL, Hennebry T. Cold leg in patient with high coated-platelets: Possible association with the use of rofecoxib. J Invasive Cardiol. 2006;18:E181–4.

    PubMed  Google Scholar 

  78. Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev. 1999;8:467–83.

    PubMed  CAS  Google Scholar 

  79. Hussey HJ, Tisdale MJ. Inhibition of tumor growth by lipoxygenase inhibitors. Br J Cancer. 1996;74:683–7.

    Article  PubMed  CAS  Google Scholar 

  80. Ye YS, Wu WKK, Bruce I, et al. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis. 2005;26:827–34.

    Article  PubMed  CAS  Google Scholar 

  81. Li N, Sood S, Wang S, et al. Overexpression of 5-lipoxygenase and cyclooxygenase-2 in Hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib. Clin Cancer Res. 2005;11:2089–96.

    Article  PubMed  CAS  Google Scholar 

  82. Sirois P, Borgeat P, Lauziere M, et al. Effect of zileuton on the 5-lipoxygnase activity of human whole blood ex vivo. Agents Actions. 1991;34:117–20.

    Article  PubMed  CAS  Google Scholar 

  83. Melstrom LG, Bentrem DJ, Salabat MR, et al. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res. 2008;14(20):6525–30.

    Article  PubMed  CAS  Google Scholar 

  84. Bolger JK, Tian W, Wolter WR, et al. Synthesis and evaluation of 5-lipoxygenase translocation inhibitors from acylnitroso hetero-Diels-Alder cycloadducts. Org Biomol Chem. 2011;9(8):2999–3010.

    Article  PubMed  CAS  Google Scholar 

  85. Ihara A, Wada K, Yoneda M, et al. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci. 2007;103(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  86. Cheon EC, Khazaie K, Khan MW, et al. Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCΔ468 mice. Cancer Res. 2011;7. doi:10.1158/0008-5472.CAN-10-1923.

  87. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595(1):1–75.

    Article  PubMed  Google Scholar 

  88. Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 [COX-2] expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett. 2001;172:111–8.

    Article  PubMed  CAS  Google Scholar 

  89. Rao CV, Desai D, Kaul B, et al. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth. Chem Biol Interact. 1992;84:277–90.

    Article  PubMed  CAS  Google Scholar 

  90. Rao CV, Desai D, Simi B, et al. Inhibitory effect of caffeic acid esters on azoxymethane-induced biochemical changes and aberrant crypt foci formation in rat colon. Cancer Res. 1993;53:4182–8.

    PubMed  CAS  Google Scholar 

  91. • Reddy DB, Reddy TCM, Jyotsna G, et al. Chebulagic acid, a COX–LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line. J Ethnopharmacol. 2009;124(3):506–12. This article demonstrates the effects of a natural agent on COX/LOX inhibition in human colon cancer cells.

    Article  PubMed  CAS  Google Scholar 

  92. Cianchi F, Cortesini C, Magnelli L, et al. Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther. 2006;5(11):2716–26.

    Article  PubMed  CAS  Google Scholar 

  93. Laufer SA, Augustin J, Dannhardt G, et al. (6,7-Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. J Med Chem. 1994;37:1894–7.

    Article  PubMed  CAS  Google Scholar 

  94. Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy. Biochem Pharmacol. 2001;62:1433–8.

    Article  PubMed  CAS  Google Scholar 

  95. •• Mohammed A, Janakiram NB, Li Q, et al. Chemoprevention of colon and small intestinal tumorigenesis in APCMin/+ mice by licofelone, a novel dual 5-LOX/COX inhibitor: potential implications for human colon cancer prevention. Cancer Prev Res. 2011;4(12):2015–26. This is a very important study showing the potential chemopreventive effects of the novel dual COX/LOX inhibitor licofelone, which is in clinical trials for treatment of arthritis in APC Min/+ mice. This can lead to potential implications for human colon cancer prevention using agents of this type.

    Article  CAS  Google Scholar 

  96. Rao CV, Swamy MV, Choi C, et al. Chemoprevention of colon carcinogenesis by licofelone, a novel dual 5-LOX/COX inhibitor in F-344rats. AACR Meeting Abstracts; 2007:11.

  97. • Janakiram NB, Mohammed A, Rao CV. Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev. 2011;30(3–4):507–23. Lipoxins and resolvins are important bioactive lipids that are generated in the arachidonic acid pathway involving the enzymes COX and LOX. This article emphasizes the importance of the regulation of COX and LOX in colon and pancreatic cancer prevention.

    Article  PubMed  CAS  Google Scholar 

  98. Arita M, Yoshida M, Hong S, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA. 2005;102:7671–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are supported by a grant from the National Cancer Institute.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinthalapally V. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, C.V., Janakiram, N.B. & Mohammed, A. Lipoxygenase and Cyclooxygenase Pathways and Colorectal Cancer Prevention. Curr Colorectal Cancer Rep 8, 316–324 (2012). https://doi.org/10.1007/s11888-012-0146-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-012-0146-1

Keywords

Navigation