Skip to main content

Advertisement

Log in

Intravascular cell-to-cell adhesive interactions and bone metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastatic cancer spread to bones, causing intractable pain, pathological fractures, spinal cord compression, and ultimately death, represents massive clinical problem. Intravascular cell-to-cell heterotypic (between cancer and other types of cells) and homotypic (between cancer cells) adhesive interactions, leading to the establishment of metastatic deposits in bone marrow vasculature, represent important rate-limiting steps in bone metastasis. In this review, we discuss molecular and cellular mechanisms underpinning metastasis-associated intravascular cell-to-cell adhesive interactions, their role in a multi-step metastatic cascade, and a potential for therapeutic targeting of early metastasis-associated adhesive events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubens, R. D. (1998). Bone metastases—the clinical problem. European Journal of Cancer, 34, 210–213.

    Article  PubMed  CAS  Google Scholar 

  2. Rubens, R. D., & Mundy, G. R. (2000). Cancer and the skeleton. London: Martin Dunitz.

    Google Scholar 

  3. Rubin, M. A., Pitzi, M., Mucci, N., Smith, D. C., Wojno, K., Korenchuk, S., et al. (2000). Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clinical Cancer Research, 6, 1038–1045.

    PubMed  CAS  Google Scholar 

  4. Loberg, R. D., Gayed, B. A., Olson, K. B., & Pienta, K. J. (2005). A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell-microenvironment interactions. Journal of Cellular Biochemistry, 96, 439–446.

    Article  PubMed  CAS  Google Scholar 

  5. Loberg, R. D., Logothetis, C. J., Keller, E. T., & Pienta, K. J. (2005). Pathogenesis and treatment of prostate cancer bone metastases: Targeting the lethal phenotype. Journal of Clinical Oncolology, 23, 8232–8241.

    Article  CAS  Google Scholar 

  6. Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91, 706–717.

    Article  PubMed  CAS  Google Scholar 

  7. Chambers, A. F., Naumov, G. N., Vantyghem, S. A., & Tuck, A. B. (2000). Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Research, 2, 400–407.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.

    PubMed  CAS  Google Scholar 

  9. Zhu, Z., Sanchez-Sweatman, O., Huang, X., Wiltrout, R., Khokha, R., Zhao, Q., et al. (2001). Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Research, 61, 1707–1716.

    PubMed  CAS  Google Scholar 

  10. Nakahara, S., Oka, N., & Raz, A. (2005). On the role of galectin-3 in cancer apoptosis. Apoptosis, 10, 267–275.

    Article  PubMed  CAS  Google Scholar 

  11. Walz, D. A., & Fenton, J. W. (1994). The role of thrombin in tumor cell metastasis. Invasion & Metastasis, 14, 303–308.

    CAS  Google Scholar 

  12. Karpatkin, S., Pearlstein, E., Ambrogio, C., & Coller, B. S. (1988). Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. The Journal of Clinical Investigation, 81, 1012–1019.

    PubMed  CAS  Google Scholar 

  13. Meromsky, L., Lotan, R., & Raz, A. (1986). Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization. Cancer Research, 46, 5270–5275.

    PubMed  CAS  Google Scholar 

  14. Updyke, T. V., & Nicolson, G. L. (1986). Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastatic potential. Clinical & Experimental Metastasis, 4, 273–284.

    Article  CAS  Google Scholar 

  15. Lotan, R., & Raz, A. (1988). Endogenous lectins as mediators of tumor cell adhesion. Journal of Cellular Biochemistry, 37, 107–117.

    Article  PubMed  CAS  Google Scholar 

  16. Glinsky, V. V., Glinsky, G. V., Glinskii, O. V., Huxley, V. H., Turk, J. R., Mossine, V. V., et al. (2003). Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Research, 63, 3805–3811.

    PubMed  CAS  Google Scholar 

  17. Cooper, C. R., Chay, C. H., Gendernalik, J. D., Lee, H. L., Bhatia, J., Taichman, R. S., et al. (2003). Stromal factors involved in prostate carcinoma metastasis to bone. Cancer, 97, 739–747.

    Article  PubMed  CAS  Google Scholar 

  18. Trikha, M., & Nakada, M. T. (2002). Platelets and cancer: Implications for antiangiogenic therapy. Semininars in Thrombosis and Hemostasis, 28, 39–44.

    Article  CAS  Google Scholar 

  19. Chay, C. H., Cooper, C. R., Gendernalik, J. D., Dhanasekaran, S. M., Chinnaiyan, A. M., Rubin, M. A., et al. (2002). A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology, 60, 760–765.

    Article  PubMed  Google Scholar 

  20. Kato, Y., Fujita, N., Kunita, A., Sato, S., Kaneko, M., Osawa, M., et al. (2003). Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. The Journal of Biological Chemistry, 278, 51599–51605.

    Article  PubMed  CAS  Google Scholar 

  21. Im, J. H., Fu, W., Wang, H., Bhatia, S. K., Hammer, D. A., Kowalska, M. A., et al. (2004). Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Research, 64, 8613–8619.

    Article  PubMed  CAS  Google Scholar 

  22. Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinomamucins, and tumor metastasis. Proceedings of the National Academy of Science of the United States of America, 98, 3352–3357.

    Article  CAS  Google Scholar 

  23. Stoelcker, B., Hafner, M., Orosz, P., Nieswandt, B., & Mannel, D. N. (1996). Role of adhesion molecules and platelets in TNFinduced adhesion of tumor cells to endothelial cells: implications for experimental metastasis. Journal of Inflammation, 46, 155–167.

    CAS  Google Scholar 

  24. Trikha, M., Raso, E., Cai, Y., Fazakas, Z., Paku, S., Porter, A. T., et al. (1998). Role of αII(b)β3 integrin in prostate cancer metastasis. Prostate, 35, 185–192.

    Article  PubMed  CAS  Google Scholar 

  25. Saiki, I., Naito, S., Yoneda, J., Azuma, I., Price, J. E., & Fidler, I. J. (1991). Characterization of the invasive and metastatic phenotype in human renal cell carcinoma. Clinical & Experimental Metastasis, 9, 551–566.

    Article  CAS  Google Scholar 

  26. Glinsky, G. V., & Glinsky, V. V. (1996). Apoptosis and metastasis: A superior resistance of metastatic cancer cells to programmed cell death. Cancer Letters, 101, 43–51.

    Article  PubMed  CAS  Google Scholar 

  27. Glinsky, G. V., Glinsky, V. V., Ivanova, A. B., & Hueser, C. N. (1997). Apoptosis and metastasis: Increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Letters, 115, 185–193.

    Article  PubMed  CAS  Google Scholar 

  28. Fidler, I. J. (1975). The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. European Journal of Cancer, 9, 223–227.

    Google Scholar 

  29. Khaldoyanidi, S. K., Glinsky, V. V., Sikora, L., Glinskii, A. B., Mossine, V. V., Quinn, T. P., et al. (2003). MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. The Journal of Biological Chemistry, 278, 4127–4134.

    Article  PubMed  CAS  Google Scholar 

  30. Orr, F. W., & Wang, H. H. (2001). Tumor cell interactions with the microvasculature: A rate-limiting step in metastasis. Surgicol Oncology Clinics of North America, 10, 357–381.

    CAS  Google Scholar 

  31. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  32. Fidler, I. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3, 453–458.

    Article  PubMed  CAS  Google Scholar 

  33. Glinskii, O. V., Huxley, V. H., Glinsky, G. V., Pienta, K. J., Raz, A., & Glinsky, V. V. (2005). Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia, 7, 522–527.

    Article  PubMed  CAS  Google Scholar 

  34. Lehr, J. E., & Pienta, K. J. (1998). Prefential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. Journal of the National Cancer Institute, 90, 118–123.

    Article  PubMed  CAS  Google Scholar 

  35. Scott, L. J., Clarke, N. W., George, N. J. R., Shanks, J. H., Testa, N. G., & Lang, S. H. (2001). Interactions of human prostatic epithelial cells with bone marrow endothelium: Binding and invasion. British Journal of Cancer, 84, 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  36. Glinsky, V. V., Glinsky, G. V., Rittenhouse-Olsen, K., Huflejt, M. E., Glinskii, O. V., Deutscher, S. L., et al. (2001). The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Research, 61, 4851–4857.

    PubMed  CAS  Google Scholar 

  37. Glinsky, V. V., Huflejt, M. E., Glinsky, G. V., Deutscher, S. L., & Quinn, T. P. (2000). Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on β-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Research, 60, 2584–2588.

    PubMed  CAS  Google Scholar 

  38. Honn, K. V., & Tang, D. G. (1992). Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Review, 11, 353–375.

    Article  CAS  Google Scholar 

  39. Cooper, C. R., Sikes, R. A., Nicholson, B. E., Sun, Y. X., Pienta, K. J., & Taichman, R. S. (2004). Cancer cells homing to bone: The significance of chemotaxis and cell adhesion. Cancer Treatment and Research, 118, 291–309.

    PubMed  CAS  Google Scholar 

  40. McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14, 585–591.

    Article  PubMed  CAS  Google Scholar 

  41. Butcher, E. C. (1991). Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell, 67 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  42. Lawrence, M. B., & Springer, T. A. (1991). Leukocytes roll on selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell, 65, 859–873.

    Article  PubMed  CAS  Google Scholar 

  43. Krause, T., & Turner, G. A. (1999). Are selectins involved in cancer metastasis? Clinical & Experimental Metastasis, 17, 183–192.

    Article  CAS  Google Scholar 

  44. Cooper, C. R., Bhatia, J. K., Muenchen, H. J., McLean, L., Hayasaka, S., Taylor, J., et al. (2002). The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines. Clinical & Experimental Metastasis, 19, 25–33.

    Article  CAS  Google Scholar 

  45. Glinskii, O. V., Turk, J. R., Pienta, K. J., Huxley, V. H., & Glinsky, V. V. (2004). Evidence of porcine and human endothelium activation by cancer-associated carbohydrates expressed on glycoproteins and tumour cells. Journal of Physiology, 554, 89–99.

    Article  PubMed  CAS  Google Scholar 

  46. Dimitroff, C. J., Lechpammer, M., Long-Woodward, D., & Kutok, J. L. (2004). Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Research, 64, 5261–5269.

    Article  PubMed  CAS  Google Scholar 

  47. Dimitroff, C. J., Descheny, L., Trujillo, N., Kim, R., Nguyen, V., Huang, W., et al. (2005). Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Research, 65, 5750–5760.

    Article  PubMed  CAS  Google Scholar 

  48. Satoh, M., Numahata, K., Kawamura, S., Saito, S., & Orikasa, S. (1998). Lack of selectin-dependent adhesion in prostate cancer cells expressing sialyl Le(x). International Journal of Urology, 5, 86–91.

    Article  PubMed  CAS  Google Scholar 

  49. Cooper, C. R., McLean, L., Mucci, N. R., Poncza, P., & Pienta, K. J. (2000). Prostate cancer cell adhesion to quiescent endothelial cells is not mediated by beta-1 integrin subunit. Anticancer Research, 20, 4159–4162.

    PubMed  CAS  Google Scholar 

  50. Romanov, V. I., & Goligorsky, M. S. (1999). RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate, 39, 108–118.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, H., Fu, W., Im, J. H., Zhou, Z., Santoro, S. A., Iyer, V., et al. (2004). Tumor cell α3β1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. The Journal of Cell Biology, 164, 935–941.

    Article  PubMed  CAS  Google Scholar 

  52. Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., et al. (2002). Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. Journal of the National Cancer Institute, 94, 1854–1862.

    PubMed  CAS  Google Scholar 

  53. Zou, J., Glinsky, V. V., Landon, L. A., Matthews, L., Deutscher, S. L. (2005). Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis, 26, 309–18.

    Article  PubMed  CAS  Google Scholar 

  54. Nangia-Makker, P., Sarvis, R., Visscher, D. W., Baily-Penrod, J., Raz, A., & Sarkar, F. H. (1998). Galectin-3 and L1 retrotransposons in human breast carcinomas. Breast Cancer Research and Treatment, 49, 171–183.

    Article  PubMed  CAS  Google Scholar 

  55. Honjo, Y., Nangia-Makker, P., Inohara, H., & Raz, A. (2001). Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clinical Cancer Research, 7, 661–668.

    PubMed  CAS  Google Scholar 

  56. Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.

    PubMed  CAS  Google Scholar 

  57. Matarrese, P., Fusco, O., Tinari, N., Natoli, C., Liu, F. T., Semeraro, M. L., et al. (2000). Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. International Journal of Cancer, 85, 545–554.

    Article  CAS  Google Scholar 

  58. Moon, B. K., Lee, Y. J., Battle, P., Jessup, J. M., Raz, A., & Kim, H. R. (2001). Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: Implication of galectin-3 function during metastasis. The American Journal of Pathology, 159, 1055–1060.

    PubMed  CAS  Google Scholar 

  59. Fukumori, T., Oka, N., Takenaka, Y., Nangia-Makker, P., Elsamman, E., Kasai, T., et al. (2006). Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Research, 66, 3114–3119.

    Article  PubMed  CAS  Google Scholar 

  60. Nakahara, S., Oka, N., & Raz, A. (2005). On the role of galectin-3 in cancer apoptosis. Apoptosis, 10, 267–275.

    Article  PubMed  CAS  Google Scholar 

  61. Inohara, H., & Raz, A. (1994). Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconjugate Journal, 11, 527–532.

    Article  PubMed  CAS  Google Scholar 

  62. Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., et al. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.

    Article  PubMed  CAS  Google Scholar 

  63. Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.

    Article  PubMed  CAS  Google Scholar 

  64. Shalom-Feuerstein, R., Cooks, T., Raz, A., & Kloog, Y. (2005). Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Research, 65, 7292–7300.

    Article  PubMed  CAS  Google Scholar 

  65. Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K. J., et al. (2000). Galectin-3 induces endothelial cell morphogenesis and angiogenesis. The American Journal of Pathology, 156, 899–909.

    PubMed  CAS  Google Scholar 

  66. Fukushi, J., Makagiansar, I. T., & Stallcup, W. B. (2004). NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Molecular Biology of the Cell, 15, 3580–3590.

    Article  PubMed  CAS  Google Scholar 

  67. Springer, G. F., Desai, P. R., Ghazizadeh, M., & Tegtmeyer, H. (1995). T/Tn pancarcinoma autoantigens: Fundamental, diagnostic, and prognostic aspects. Cancer Detection and Prevention, 19, 173–182.

    PubMed  CAS  Google Scholar 

  68. Lotan, R., Belloni, P. N., Tressler, R. J., Lotan, D., Xu, X. C., & Nicolson, G. L. (1994). Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconjugate Journal, 11, 462–468.

    Article  PubMed  CAS  Google Scholar 

  69. Pienta, K. J., Naik, H., Akhtar, A., Yamazaki, K., Replogle, T. S., Lehr, J., et al. (1995). Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. Journal of the National Cancer Institute, 87, 348–353.

    Article  PubMed  CAS  Google Scholar 

  70. Glinsky, G. V., Price, J. E., Glinsky, V. V., Mossine, V. V., Kiriakova, G., & Metcalf, J. B. (1996). Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines. Cancer Research, 56, 5319–5324.

    PubMed  CAS  Google Scholar 

  71. Ponta, H., Sherman, L., & Herrlich, P. A. (2003). CD44: From adhesion molecules to signalling regulators. Nature Reviews. Molecular Cell Biology 4, 33–45.

    Google Scholar 

  72. Okado, T., & Hawley, R. G. (1995). Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. International Journal of Cancer, 63, 823–830.

    Article  CAS  Google Scholar 

  73. Mine, S., Fujisaki, T., Kawahara, C., Tabata, T., Iida, T., Yasuda, M., et al. (2003). Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Experimental Cell Research, 288, 189–197.

    Article  PubMed  CAS  Google Scholar 

  74. Hill, A., McFarlane, S., Mulligan, K., Gillespie, H., Draffin, J. E., Trimble, A., et al. (2006). Cortactin underpins CD44-promoted invasion and adhesion of breast cancer cells to bone marrow endothelial cells. Oncogene, 25, 6079-6091.

  75. Draffin, J. E., McFarlane, S., Hill, A., Johnston, P. G., & Waugh, D. J. J. (2004). CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Research, 64, 5702–5711.

    Article  PubMed  CAS  Google Scholar 

  76. Hill, A., McFarlane, S., Johnston, P. G., & Waugh, D. J. (2006). The emerging role of CD44 in regulating skeletal micrometastasis. Cancer Letter, 237, 1–9.

    Article  CAS  Google Scholar 

  77. Simpson, M. A., Reiland, J., Burger, S. R., Furcht, L. T., Spicer, A. P., Oegema, T. R., Jr, et al. (2001). Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite for rapid adhesion to bone marrow endothelial cells. The Journal of Biological Chemistry, 276, 17949–17957.

    Article  PubMed  CAS  Google Scholar 

  78. Simpson, M. A., Wilson, C. M., Furcht, L. T., Spicer, A. P., Oegema, T. R., Jr, & McCarthy, J. B. (2002). Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells. The Journal of Biological Chemistry, 277, 10050–10057.

    Article  PubMed  CAS  Google Scholar 

  79. Simpson, M. A., Wilson, C. M., & McCarthy, J. B. (2002). Inhibition of prostate tumour cell hyaluronan synthesis impairs subcutaneous growth and vascularisation in immunocompromised mice. The American Journal of Pathology, 161, 849–857.

    PubMed  CAS  Google Scholar 

  80. Singh, R., Campbell, B. J., Yu, L. G., Fernig, D. G., Milton, J. D., & Goodlad, R. A. (2001). Cell surface-expressed Thomsen-Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology, 11, 587–592.

    Article  PubMed  CAS  Google Scholar 

  81. Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.

    Article  PubMed  CAS  Google Scholar 

  82. Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  83. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., et al. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 23, 879–894.

    Article  PubMed  CAS  Google Scholar 

  84. Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biology Research, 38, 1449–1454.

    CAS  Google Scholar 

  85. Zlotnik, A. (2006). Involvement of chemokine receptors in organ-specific metastasis. Contributions to Microbiology, 13, 191–199.

    Article  PubMed  CAS  Google Scholar 

  86. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    Article  PubMed  CAS  Google Scholar 

  87. Taichman, R. S., Cooper, C., Keller, E. T, Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.

    PubMed  CAS  Google Scholar 

  88. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., & Ben-Baruch, A. (2001). A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. The Journal of Immunology, 167, 4747–4757.

    PubMed  CAS  Google Scholar 

  89. Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100, 2597–2606.

    Article  PubMed  CAS  Google Scholar 

  90. Sloan, E. K., & Anderson, R. L. (2002). Genes involved in breast cancer metastasis to bone. Cellular and Molecular Life Sciences, 59, 1491–1502.

    Article  PubMed  CAS  Google Scholar 

  91. Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Research, 63, 7926–7935.

    PubMed  CAS  Google Scholar 

  92. Prasad, A., Fernandis, A. Z., Rao, Y., & Ganju, R. K. (2004). Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. The Journal of Biological Chemistry, 279, 9115–9124.

    Article  PubMed  CAS  Google Scholar 

  93. Gazitt, Y., & Akay, C. (2004). Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells, 22, 65–73.

    Article  PubMed  CAS  Google Scholar 

  94. Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.

    Article  PubMed  CAS  Google Scholar 

  95. Havens, A. M., Jung, Y., Sun, Y. X., & Taichman, R. S. (2006). The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer, 6, 195; doi: http://dx.doi.org/10.1186/1471-2407-6-195.

  96. Masuzawa, Y., Miyauchi, T., Hamanoue, M., Ando, S., Yoshida, J., Takao, S., et al. (1992). A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells: sequence analysis and examination of gene expression. Journal of Biochemistry (Tokyo), 112, 609–615.

    CAS  Google Scholar 

  97. Chan, J. Y., Lee-Prudhoe, J. E., Jorgensen, B., Ihrke, G., Doyonnas, R., Zannettino, A. C., et al. (2001). Relationship between novel isoforms, functionally important domains, and subcellular distribution of CD164/endolyn. The Journal of Biological Chemistry, 276, 2139–2152.

    Article  PubMed  CAS  Google Scholar 

  98. Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20, 318–329.

    Article  PubMed  CAS  Google Scholar 

  99. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nature Medicine, 6, 100–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

VVG is supported by the VA Merit Review Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Glinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinsky, V.V. Intravascular cell-to-cell adhesive interactions and bone metastasis. Cancer Metastasis Rev 25, 531–540 (2006). https://doi.org/10.1007/s10555-006-9029-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9029-8

Keywords

Navigation