Skip to main content
Log in

Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The presence of microcalcifications (µCalcs) >5 µm within the cap of human fibroatheroma has been shown to produce a 200–700 % increase in peak circumferential stress, which can transform a stable plaque into a vulnerable one, whereas µCalcs < 5 µm do not appear to increase risk. We quantitatively examine the possibility to distinguish caps with µCalcs > 5 µm based on the gross morphological features of fibroatheromas, and the correlation between the size and distribution of µCalcs in the cap and the calcification in the lipid/necrotic core beneath it. Atherosclerotic lesions (N = 72) were imaged using HR-μCT at 2.1-μm resolution for detailed analysis of atheroma morphology and composition, and validated using non-decalcified histology. At 2.1-μm resolution one observes four different patterns of calcification within the lipid/necrotic core, and is able to elucidate the 3D spatial progression of the calcification process using these four patterns. Of the gross morphological features identified, only minimum cap thickness positively correlated with the existence of µCalcs > 5 µm in the cap. We also show that µCalcs in the cap accumulate in the vicinity of the lipid/necrotic core boundary with few on the lumen side of the cap. HR-μCT enables three-dimensional assessment of soft tissue composition, lipid content, calcification patterns within lipid/necrotic cores and analysis of the axial progression of calcification within individual atheroma. The distribution of µCalcs within the cap is highly non-uniform and decreases sharply as one proceeds from the lipid pool/necrotic core boundary to the lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281(10):921–926

    Article  CAS  PubMed  Google Scholar 

  2. Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3):267–272

    Article  PubMed  Google Scholar 

  3. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336(18):1276–1282

    Article  CAS  PubMed  Google Scholar 

  4. Virmani R, Narula J, Leon M, Willerson JTE (2007) The vulnerable atherosclerotic plaque: strategies for diagnosis and management. Blackwell, Malden

    Google Scholar 

  5. Vliegenthart R, Oudkerk M, Hofman A et al (2005) Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112:572–577

    Article  PubMed  Google Scholar 

  6. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056

    Article  CAS  PubMed  Google Scholar 

  7. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 103(40):14678–14683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, Virmani R et al (2012) A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol 303(5):H619–H628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Maldonado N, Kelly-Arnold A, Cardoso L, Weinbaum S (2013) The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech 46(2):396–401

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S (2013) A revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA 110(26):10741–10746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vengrenyuk Y, Cardoso L, Weinbaum S (2008) Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech 5(1):37

    PubMed  Google Scholar 

  12. Vengrenyuk Y, Kaplan TJ, Cardoso L, Randolph GJ, Weinbaum S (2010) Computational stress analysis of atherosclerotic plaques in ApoE knockout mice. Ann Biomed Eng 38(3):738–747

    Article  PubMed  Google Scholar 

  13. Rambhia SH, Liang X, Xenos M, Alemu Y, Maldonado N, Kelly A et al (2012) Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study. Ann Biomed Eng 40(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  14. Cardoso L, Kelly-Arnold A, Maldonado N, Laudier D, Weinbaum S (2014) Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech 47(4):870–877

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cardoso L, Weinbaum S (2014) Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann Biomed Eng 42(2):415–431

    Article  PubMed Central  PubMed  Google Scholar 

  16. Palacio-Mancheno PE, Larriera AI, Doty SB, Cardoso L, Fritton SP (2014) 3D assessment of cortical bone porosity and tissue mineral density using high-resolution micro-CT: effects of resolution and threshold method. J Bone Miner Res 29(1):142–150

    Article  PubMed  Google Scholar 

  17. Hutcheson J, Maldonado N, Aikawa E (2014) Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol 25(5):327–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bobryshev YV, Killingsworth MC, Lord RS, Grabs AJ (2008) Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. J Cell Mol Med 12(5B):2073–2082

    Article  CAS  PubMed  Google Scholar 

  19. Roijers RB, Debernardi N, Cleutjens JP, Schurgers LJ, Mutsaers PH, van der Vusse GJ (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178(6):2879–2887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. New SEP, Aikawa E (2011) Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 108(11):1381–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J et al (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 295(2):H717–H727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Akyildiz AC, Speelman L, van Brummelen H, Gutierrez MA, Virmani R, van der Lugt A et al (2011) Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 10:25

    Article  PubMed Central  PubMed  Google Scholar 

  23. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by NIH HL101151, AG034198 and DK103362, National Science Foundation MRI 0723027, 1229449 and CMMI 1333560, and a Professional Staff Congress CUNY award.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado, N., Kelly-Arnold, A., Laudier, D. et al. Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma. Int J Cardiovasc Imaging 31, 1079–1087 (2015). https://doi.org/10.1007/s10554-015-0650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0650-x

Keywords

Navigation