Skip to main content

Advertisement

Log in

BIRC5 (survivin): a pejorative prognostic marker in stage II/III breast cancer with no response to neoadjuvant chemotherapy

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Neoadjuvant systemic therapy (NAC) is currently used in the treatment of stage II/III breast cancer. Pathological complete response as a surrogate endpoint for clinical outcomes is not completely validated for all subgroups of breast cancers. Therefore, there is a need for reliable predictive tests of the most effective treatment.

Methods

We used a combination of predictive clinical, pathological, and gene expression-based markers of response to NAC in a prospective phase II multicentre randomized clinical trial in breast cancer patients, with a long follow-up (8 years). This study concerned the subpopulation of 188 patients with similar levels of pathological response rates to sequential epirubicin/cyclophosphamide and docetaxel to determine predictive marker of pCR and DFS. We used a set of 45 genes selected from high throughput analysis and a standardized RT-qPCR. We analyzed the predictive markers of pathological complete response (pCR) and DFS in the overall population and DFS the subpopulation of 159 patients with no pCR.

Results

In the overall population, combining both clinical and genomic variables, large tumor size, low TFF1, and MYBL2 overexpression were significantly associated with pCR. T4 Stage, lymphovascular invasion, negative PR status, histological type, and high values of CCNB1 were associated with DFS. In the no pCR population, only lymphovascular invasion and high values of BIRC5 were associated with DFS.

Conclusions

We confirm the importance of ER-related and proliferation genes in the prediction of pCR in NAC-treated breast cancer patients. Furthermore, we identified BIRC5 (survivin) as a main pejorative prognostic factor in patients with breast cancers with no pCR. These results also open perspective for predictive markers of new targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

DFS:

Disease-free survival

ER:

Estrogen receptor

NAC:

Neoadjuvant chemotherapy

pCR:

Pathological complete response

PgR:

Progesterone receptor

References

  1. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  CAS  PubMed  Google Scholar 

  2. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16:2672–2685

    CAS  PubMed  Google Scholar 

  3. Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S et al (2002) Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20:1456–1466

    Article  CAS  PubMed  Google Scholar 

  4. Funt SA, Chapman PB (2016) The role of neoadjuvant trials in drug development for solid tumors. Clin Cancer Res 22:2323–2328

    Article  CAS  PubMed  Google Scholar 

  5. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172

    Article  PubMed  Google Scholar 

  6. Berruti A, Amoroso V, Gallo F, Bertaglia V, Simoncini E et al (2014) Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta-regression of 29 randomized prospective studies. J Clin Oncol 32:3883–3891

    Article  PubMed  Google Scholar 

  7. Darb-Esfahani S, Loibl S, Müller BM, Roller M, Denkert C et al (2009) Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res 11:R69

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li XR, Liu M, Zhang YJ, Wang JD, Zheng YQ et al (2011) CK5/6, EGFR, Ki-67, cyclin D1, and nm23-H1 protein expressions as predictors of pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Med Oncol 28(1):S129–S134

    Article  PubMed  Google Scholar 

  9. Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Vincent A et al (2012) Neoadjuvant chemotherapy in ER+ HER2− breast cancer: response prediction based on immunohistochemical and molecular characteristics. Breast Cancer Res Treat 131:827–836

    Article  CAS  PubMed  Google Scholar 

  10. von Minckwitz G, Fontanella C (2013) Selecting the neoadjuvant treatment by molecular subtype: how to maximize the benefit? Breast 22(Suppl 2):S149–S151

    Article  Google Scholar 

  11. Pierga JY, Delaloge S, Espié M, Brain E, Sigal-Zafrani B et al (2010) A multicenter randomized phase II study of sequential epirubicin/cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients. Breast Cancer Res Treat 122:429–437

    Article  CAS  PubMed  Google Scholar 

  12. Chevallier B, Roche H, Olivier JP, Chollet P, Hurteloup P (1993) Inflammatory breast cancer Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol 16:223–228

    Article  CAS  PubMed  Google Scholar 

  13. de Cremoux P, Valet F, Gentien D, Lehmann-Che J, Scott V et al (2011) Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients. BMC Cancer 11:215

    Article  PubMed  PubMed Central  Google Scholar 

  14. Valet F, de Cremoux P, Spyratos F, Servant N, Dujaric ME et al (2013) Challenging single- and multi-probesets gene expression signatures of pathological complete response to neoadjuvant chemotherapy in breast cancer: experience of the REMAGUS 02 phase II trial. Breast 22:1052–1059

    Article  CAS  PubMed  Google Scholar 

  15. Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 17:R245–R262

    Article  CAS  PubMed  Google Scholar 

  16. Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233

    Article  CAS  PubMed  Google Scholar 

  18. Ren F, Tang R, Zhang X, Madushi WM, Luo D et al (2015) Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: a systematic review and meta-analysis. PLoS One 10:e0135544

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smoter M, Bodnar L, Duchnowska R, Stec R, Grala B et al (2011) The role of Tau protein in resistance to paclitaxel. Cancer Chemother Pharmacol 68:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brase JC, Schmidt M, Fischbach T, Sültmann H, Bojar H et al (2010) ERBB2 and TOP2A in breast cancer: a comprehensive analysis of gene amplification, RNA levels, and protein expression and their influence on prognosis and prediction. Clin Cancer Res 16:2391–2401

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Dubois RN (2004) Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 31:64–73

    Article  CAS  PubMed  Google Scholar 

  22. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M et al (2006) Reporting recommendations for tumor marker prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  23. Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48:3342–3354

    Article  CAS  PubMed  Google Scholar 

  24. Whitfield ML, George LK, Grant GD, Perou CM (2006) Common markers of proliferation. Nat Rev Cancer 6:99–106

    Article  CAS  PubMed  Google Scholar 

  25. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  PubMed Central  Google Scholar 

  26. Spyratos F, Valet F, Bièche I, Scott V, Lehmann-Che J et al (2012) Comments on the use of a single or multiple probeset approach for microarray-based analyses of routine molecular markers in breast cancer. Breast Cancer Res Treat 134:443–448

    Article  PubMed  Google Scholar 

  27. Gianni L, Zambetti M, Clark K, Baker J, Cronin M et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23:7265–7277

    Article  CAS  PubMed  Google Scholar 

  28. Tordai A, Wang J, Andre F, Liedtke C, Yan K et al (2008) Evaluation of biolgical pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10:R37

    Article  PubMed  PubMed Central  Google Scholar 

  29. Witkiewicz AK, Balaji U, Knudsen ES (2014) Systematically defining single-gene determinants of response to neoadjuvant chemotherapy reveals specific biomarkers. Clin Cancer Res 20:4837–4848

    Article  CAS  PubMed  Google Scholar 

  30. Liu R, Lv QL, Yu J, Hu L, Zhang LH et al (2015) Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 151:607–618

    Article  CAS  PubMed  Google Scholar 

  31. Liu YL, Saraf A, Lee SM, Zhong X, Hibshoosh H et al (2016) Lymphovascular invasion is an independent predictor of survival in breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat 157(3):555–564

    Article  CAS  PubMed  Google Scholar 

  32. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  CAS  PubMed  Google Scholar 

  33. Altieri DC (2008) New wirings in the survivin networks. Oncogene 27:6276–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka K, Iwamoto S, Gon G, Nohara T, Iwamoto M et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6:127–134

    CAS  PubMed  Google Scholar 

  35. Hinnis AR, Luckett JC, Walker RA (2007) Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer 96:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M et al (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17:597–604

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita S, Masuda Y, Kurizaki T, Haga Y, Murayama T et al (2007) Survivin expression predicts early recurrence in early-stage breast cancer. Anticancer Res 27:2803–2808

    CAS  PubMed  Google Scholar 

  38. Masuda PN, Sweep FC, Wiegerinck ET, Tjan-Heijnen VC, Manders P et al (2004) Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem 50:1986–1993

    Article  Google Scholar 

  39. Kennedy SM, O’Driscoll L, Purcell R, Fitz-Simons N, McDermott EW et al (2003) Prognostic importance of survivin in breast cancer. Br J Cancer 88:1077–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrarca CR, Brunetto AT, Duval V, Brondani A, Carvalho GP et al (2011) Survivin as a predictive biomarker of complete pathologic response to neoadjuvant chemotherapy in patients with stage II and stage III breast cancer. Clin Breast Cancer 11:129–134

    Article  CAS  PubMed  Google Scholar 

  41. Span PN, Tjan-Heijnen VC, Sweep FC (2007) Is survivin expression nevertheless related to disease outcome in breast cancer? Breast Cancer Res Treat 103:109

    Article  PubMed  Google Scholar 

  42. Li Y, Ma X, Wu X, Liu X, Liu L (2014) Prognostic significance of survivin in breast cancer: meta-analysis. Breast J 20:514–524

    Article  CAS  PubMed  Google Scholar 

  43. Song J, Su H, Zhou YY, Guo LL (2013) Prognostic value of survivin expression in breast cancer patients: a meta-analysis. Tumour Biol 34:2053–2062

    Article  CAS  PubMed  Google Scholar 

  44. Faversani A, Vaira V, Moro GP, Tosi D, Lopergolo A et al (2014) Survivin family proteins as novel molecular determinants of doxorubicin resistance in organotypic human breast tumors. Breast Cancer Res 16:R55

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang S, Wang L, Chen M, Wang Y (2015) Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression. Chem Biol Interact 235:76–84

    Article  CAS  PubMed  Google Scholar 

  46. Hu Y, Xu K, Yagüe E (2015) miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat 151:269–280

    Article  CAS  PubMed  Google Scholar 

  47. Véquaud E, Desplanques G, Jézéquel P, Juin P, Barillé-Nion S (2016) Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res Treat 155:53–63

    Article  PubMed  Google Scholar 

  48. Chen X, Duan N, Zhang C, Zhang W (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 7:314–323

    Article  PubMed  PubMed Central  Google Scholar 

  49. Clemens MR, Gladkov OA, Gartner E, Vladimirov V, Crown J et al (2015) Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat 149:171–179

    Article  CAS  PubMed  Google Scholar 

  50. Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P et al (2015) FOXM1 targets XIAP and survivin to modulate breast cancer survival and chemoresistance. Cell Signal 27:2496–2505

    Article  CAS  PubMed  Google Scholar 

  51. Paik S, Shak S, Tang G, Kim C, Baker J et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 51:2817–2826

    Article  Google Scholar 

  52. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17:6012–6020

    Article  CAS  PubMed  Google Scholar 

  53. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C et al (2015) Development and verification of the PAM50-based prosigna breast cancer gene signature assay. BMC Med Genom 8:54

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of the Remagus02 group (S Delaloge, M Espié, S Giacchetti, E Brain, JY Pierga) for their contribution to this work. We thank K Tran-Perennou, C Barbaroux, and S Vacher for their helpful technical contribution. We thank Y de Rycke for his expert biostatistics contribution and helpful discussions. This work was supported by Academic Grants (PHRC AOM/2OO2/02117) and Industrial Grants from Pfizer Inc., Roche, Sanofi- Aventis ISRCTN100599. AS Hamy-Petit was supported by an ITMO-INSERM-AVIESAN cancer translational research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. de Cremoux.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

F. Spyratos and P. de Cremoux have contributed equally to the study

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamy, A.S., Bieche, I., Lehmann-Che, J. et al. BIRC5 (survivin): a pejorative prognostic marker in stage II/III breast cancer with no response to neoadjuvant chemotherapy. Breast Cancer Res Treat 159, 499–511 (2016). https://doi.org/10.1007/s10549-016-3961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3961-2

Keywords

Navigation