Skip to main content

Advertisement

Log in

Identification and translational validation of novel mammaglobin-A CD8 T cell epitopes

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mammaglobin-A (MAM-A) is a secretory protein that is overexpressed in 80 % of human breast cancers. Its near-universal expression in breast cancer as well as its exquisite tissue specificity makes it an attractive target for a breast cancer prevention vaccine, and we recently initiated a phase 1 clinical trial of a MAM-A DNA vaccine. Previously, we have identified multiple MAM-A CD8 T cell epitopes using a reverse immunology candidate epitope approach based on predicted binding, but to date no attempt has been made to identify epitopes using an unbiased approach. In this study, we used human T cells primed in vitro with autologous dendritic cells expressing MAM-A to systematically identify MAM-A CD8 T cell epitopes. Using this unbiased approach, we identified three novel HLA-A2-restricted MAM-A epitopes. CD8 T cells specific for these epitopes are able to recognize and lyse human breast cancer cells in a MAM-A-specific, HLA-A2-dependent fashion. HLA-A2+/MAM-A+ breast cancer patients have an increased prevalence of CD8 T cells specific for these novel MAM-A epitopes, and vaccination with a MAM-A DNA vaccine significantly increases the number of these CD8 T cells. The identification and translational validation of novel MAM-A epitopes has important implications for the ongoing clinical development of vaccine strategies targeting MAM-A. The novel MAM-A epitopes represent attractive targets for epitope-based vaccination strategies, and can also be used to monitor immune responses. Taken together these studies provide additional support for MAM-A as an important therapeutic target for the prevention and treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjanen K (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A:859–864

    Article  PubMed  CAS  Google Scholar 

  2. Bharat A, Benshoff N, Fleming TP, Dietz JR, Gillanders WE, Mohanakumar T (2008) Characterization of the role of CD8+ T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res Treat 110:453–463. doi:10.1007/s10549-007-9741-2

    Article  PubMed  CAS  Google Scholar 

  3. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208. doi:10.1146/annurev.immunol.24.021605.090733

    Article  PubMed  CAS  Google Scholar 

  4. Chentoufi AA, Zhang X, Lamberth K, Dasgupta G, Bettahi I, Nguyen A, Wu M, Zhu X, Mohebbi A, Buus S, Wechsler SL, Nesburn AB, BenMohamed L (2008) HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D. J Immunol 180:426–437

    Article  PubMed  CAS  Google Scholar 

  5. Cho HI, Celis E (2012) Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 61:343–351. doi:10.1007/s00262-011-1110-7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, Ferrari G, Birx DL, Cox JH (2002) A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J Immunol Methods 260:157–172

    Article  PubMed  CAS  Google Scholar 

  7. Dannull J, Diener PA, Prikler L, Furstenberger G, Cerny T, Schmid U, Ackermann DK, Groettrup M (2000) Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 60:5522–5528

    PubMed  CAS  Google Scholar 

  8. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB et al (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54:16–20

    PubMed  CAS  Google Scholar 

  9. Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann NY Acad Sci 923:78–89

    Article  PubMed  CAS  Google Scholar 

  10. Flies DB, Sandler BJ, Sznol M, Chen L (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84:409–421

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Germeau C, Ma W, Schiavetti F, Lurquin C, Henry E, Vigneron N, Brasseur F, Lethe B, De Plaen E, Velu T, Boon T, Coulie PG (2005) High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 201:241–248. doi:10.1084/jem.20041379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Goedegebuure PS, Watson MA, Viehl CT, Fleming TP (2004) Mammaglobin-based strategies for treatment of breast cancer. Curr Cancer Drug Targets 4:531–542

    Article  PubMed  CAS  Google Scholar 

  13. Gotch F, Rothbard J, Howland K, Townsend A, McMichael A (1987) Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 326:881–882. doi:10.1038/326881a0

    Article  PubMed  CAS  Google Scholar 

  14. Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104:2840–2848. doi:10.1182/blood-2004-03-0859

    Article  PubMed  CAS  Google Scholar 

  15. Ilias Basha H, Tiriveedhi V, Fleming TP, Gillanders WE, Mohanakumar T (2011) Identification of immunodominant HLA-B7-restricted CD8cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res Treat 127:81–89. doi:10.1007/s10549-010-0975-z

    Article  PubMed  CAS  Google Scholar 

  16. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97:4760–4765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T (2002) Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 102:499–506. doi:10.1002/ijc.10736

    Article  PubMed  CAS  Google Scholar 

  18. Jaramillo A, Narayanan K, Campbell LG, Benshoff ND, Lybarger L, Hansen TH, Fleming TP, Dietz JR, Mohanakumar T (2004) Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res Treat 88:29–41. doi:10.1007/s10549-004-8918-1

    Article  PubMed  CAS  Google Scholar 

  19. Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874. doi:10.1038/sj.leu.2404787

    Article  PubMed  CAS  Google Scholar 

  20. Letsch A, Keilholz U, Schadendorf D, Nagorsen D, Schmittel A, Thiel E, Scheibenbogen C (2000) High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma. Int J Cancer 87:659–664. doi:10.1002/1097-0215(20000901)87:5<659:AID-IJC7>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  21. Linette GP, Zhang D, Hodi FS, Jonasch EP, Longerich S, Stowell CP, Webb IJ, Daley H, Soiffer RJ, Cheung AM, Eapen SG, Fee SV, Rubin KM, Sober AJ, Haluska FG (2005) Immunization using autologous dendritic cells pulsed with the melanoma-associated antigen gp100-derived G280-9 V peptide elicits CD8+ immunity. Clin Cancer Res 11:7692–7699. doi:10.1158/1078-0432.CCR-05-1198

    Article  PubMed  CAS  Google Scholar 

  22. Lundegaard C, Lund O, Nielsen M (2011) Prediction of epitopes using neural network based methods. J Immunol Methods 374:26–34. doi:10.1016/j.jim.2010.10.011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Manna PP, Jaramillo A, Majumder K, Campbell LG, Fleming TP, Dietz JR, Dipersio JF, Mohanakumar T (2003) Generation of CD8+ cytotoxic T lymphocytes against breast cancer cells by stimulation with mammaglobin-A-pulsed dendritic cells. Breast Cancer Res Treat 79:133–136

    Article  PubMed  CAS  Google Scholar 

  24. Muenst S, Soysal SD, Gao F, Obermann EC, Oertli D, Gillanders WE (2013) The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139:667–676. doi:10.1007/s10549-013-2581-3

    Article  PubMed  CAS  Google Scholar 

  25. Narayanan K, Jaramillo A, Benshoff ND, Campbell LG, Fleming TP, Dietz JR, Mohanakumar T (2004) Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J Natl Cancer Inst 96:1388–1396. doi:10.1093/jnci/djh261

    Article  PubMed  CAS  Google Scholar 

  26. Nuber N, Curioni-Fontecedro A, Matter C, Soldini D, Tiercy JM, von Boehmer L, Moch H, Dummer R, Knuth A, van den Broek M (2010) Fine analysis of spontaneous MAGE-C1/CT7-specific immunity in melanoma patients. Proc Natl Acad Sci USA 107:15187–15192. doi:10.1073/pnas.1002155107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Radford KJ, Tullett KM, Lahoud MH (2014) Dendritic cells and cancer immunotherapy. Curr Opin Immunol 27C:26–32. doi:10.1016/j.coi.2014.01.005

    Article  Google Scholar 

  28. Schaubert KL, Price DA, Frahm N, Li J, Ng HL, Joseph A, Paul E, Majumder B, Ayyavoo V, Gostick E, Adams S, Marincola FM, Sewell AK, Altfeld M, Brenchley JM, Douek DC, Yang OO, Brander C, Goldstein H, Kan-Mitchell J (2007) Availability of a diversely avid CD8+ T cell repertoire specific for the subdominant HLA-A2-restricted HIV-1 Gag p2419-27 epitope. J Immunol 178:7756–7766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Schaubert KL, Price DA, Salkowitz JR, Sewell AK, Sidney J, Asher TE, Blondelle SE, Adams S, Marincola FM, Joseph A, Sette A, Douek DC, Ayyavoo V, Storkus W, Leung MY, Ng HL, Yang OO, Goldstein H, Wilson DB, Kan-Mitchell J (2010) Generation of robust CD8+ T-cell responses against subdominant epitopes in conserved regions of HIV-1 by repertoire mining with mimotopes. Eur J Immunol 40:1950–1962. doi:10.1002/eji.200940079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Schumacher TN, Restifo NP (2009) Adoptive T cell therapy of cancer. Curr Opin Immunol 21:187–189. doi:10.1016/j.coi.2009.03.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Stuber G, Leder GH, Storkus WT, Lotze MT, Modrow S, Szekely L, Wolf H, Klein E, Karre K, Klein G (1994) Identification of wild-type and mutant p53 peptides binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay. Eur J Immunol 24:765–768. doi:10.1002/eji.1830240341

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka Y, Amos KD, Fleming TP, Eberlein TJ, Goedegebuure PS (2003) Mammaglobin-A is a tumor-associated antigen in human breast carcinoma. Surgery 133:74–80. doi:10.1067/msy.2003.92

    Article  PubMed  Google Scholar 

  33. Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, Laheru DA, Goggins M, Hruban RH, Jaffee EM (2004) Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 200:297–306. doi:10.1084/jem.20031435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tiriveedhi V, Fleming TP, Goedegebuure PS, Naughton M, Ma C, Lockhart C, Gao F, Gillanders WE, Mohanakumar T (2012) Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ ICOS(hi) T cells. Breast Cancer Res Treat. doi:10.1007/s10549-012-2110-9

    PubMed  PubMed Central  Google Scholar 

  35. Tiriveedhi V, Sarma NJ, Subramanian V, Fleming TP, Gillanders WE, Mohanakumar T (2012) Identification of HLA-A24-restricted CD8(+) cytotoxic T-cell epitopes derived from mammaglobin-A, a human breast cancer-associated antigen. Hum Immunol 73:11–16. doi:10.1016/j.humimm.2011.10.017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Viehl CT, Frey DM, Phommaly C, Chen T, Fleming TP, Gillanders WE, Eberlein TJ, Goedegebuure PS (2008) Generation of mammaglobin-A-specific CD4 T cells and identification of candidate CD4 epitopes for breast cancer vaccine strategies. Breast Cancer Res Treat 109:305–314. doi:10.1007/s10549-007-9657-x

    Article  PubMed  CAS  Google Scholar 

  37. Viehl CT, Tanaka Y, Chen T, Frey DM, Tran A, Fleming TP, Eberlein TJ, Goedegebuure PS (2005) Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells. Breast Cancer Res Treat 91:271–278. doi:10.1007/s10549-005-0450-4

    Article  PubMed  CAS  Google Scholar 

  38. Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R, Fleming TP (1999) Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 59:3028–3031

    PubMed  CAS  Google Scholar 

  39. Watson MA, Fleming TP (1994) Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res 54:4598–4602

    PubMed  CAS  Google Scholar 

  40. Xu W, Watts DM, Costanzo MC, Tang X, Venegas LA, Jiao F, Sette A, Sidney J, Sewell AK, Wooldridge L, Makino S, Morrill JC, Peters CJ, Kan-Mitchell J (2013) The nucleocapsid protein of Rift Valley fever virus is a potent human CD8+ T cell antigen and elicits memory responses. PLoS ONE 8:e59210. doi:10.1371/journal.pone.0059210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Yamada A, Sasada T, Noguchi M, Itoh K (2013) Next-generation peptide vaccines for advanced cancer. Cancer Sci 104:15–21. doi:10.1111/cas.12050

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research Grants from the Swiss National Foundation (SNF) (PBBSP3-138709) (SM), DOD/CDMRP-BCRP W81XWH-06-1-0677 (WEG), and the Barnes Jewish Hospital Foundation (TM, SPG). We are also extremely grateful to George and Diana Holway, whose generous gift provided the resources necessary to help us realize the promise of new discovery.

Conflict of interest

The authors declare that they have no conflict of interest. All the experiments conducted in this study comply with the current laws of the United States of America. Peripheral blood from patients was obtained after informed consent in accordance with a protocol approved by the Institutional Review Board at Washington University School of Medicine (WUSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muenst.

Additional information

Soysal SD and Muenst S contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2014_3129_MOESM1_ESM.tif

Supplementary material 1 (TIFF 1910 kb). Supplementary Fig. 1. a, b PBMC from MAM-A+, HLA-A2+ breast cancer patients were stimulated with selected peptides and assessed for recognition of peptide-pulsed APC. IFNγ ELISPOT data from two patients are shown c Recognition of predicted minimal epitopes by peptide-specific T cells. Using the epitope prediction algorithm netMHC3.2, the best predicted minimal epitopes encoded by P2, P5, P12, and P13 were tested for recognition by peptide-specific T cells from two breast cancer patients in IFNγ ELISPOT assays

10549_2014_3129_MOESM2_ESM.tif

Supplementary material 2 (TIFF 1118 kb). Supplementary Fig. 2 a P2-specific T cells recognize AU565, and the HLA-A2+, MAM-A-negative MCF7 after pulsing with P2. Recognition of peptide-pulsed MCF7 was blocked by anti-HLA-A2 Ab (+1) b P12-specific T cells recognize AU565 and P12-pulsed MCF7 (+) but not MCF7 pulsed with P2 (+2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soysal, S.D., Muenst, S., Kan-Mitchell, J. et al. Identification and translational validation of novel mammaglobin-A CD8 T cell epitopes. Breast Cancer Res Treat 147, 527–537 (2014). https://doi.org/10.1007/s10549-014-3129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3129-x

Keywords

Navigation