Skip to main content

Advertisement

Log in

Loss of glucocorticoid receptor activation is a hallmark of BRCA1-mutated breast tissue

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 08 March 2016

Abstract

Glucocorticoids (GCs) regulate cell homeostasis and can affect carcinogenesis. An inherited germline mutation in the BRCA1 gene, a tumor suppressor gene, confers a predisposition to breast and ovarian cancers. BRCA1 participates in the maintenance of genome stability through DNA repair, in cellular homeostasis through gene transcription, and in signaling regulation. The interaction between BRCA1 and the glucocorticoid receptor (GR) signaling pathway was studied in normal breast tissues and triple-negative breast cancers from BRCA1 mutation carriers. A loss of the active Ser211 phosphorylated form of GR was found in the mutant as compared to the non-mutant. In in vitro studies, the BRCA1 status in breast cancer cell lines regulates GC-dependent proliferation/apoptosis and impacts GC-dependent gene expression. The lack of BRCA1 inhibited dexamethasone actions on its target genes’ expression and the opposite effect was seen with BRCA1 overexpression. BRCA1 overexpression enhances MAPK p38 phosphorylation, resulting in an amplification of GR phosphorylation on Ser 211 and GR basal expression. Our results indicate that BRCA1 is essential to develop an efficient GC signalization. GR P-Ser211 levels may constitute an important diagnostic factor for screening BRCA1 loss of expression in tumors from BRCA1 mutation carriers as well as in sporadic BRCAness tumors. This marker may help to optimize therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ et al (2001) Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20:77–87

    Article  CAS  PubMed  Google Scholar 

  6. Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, Rosen EM (2006) The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol 20:14–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD, Stallcup MR, Press MF, Coetzee GA (2000) Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res 60:5946–5949

    CAS  PubMed  Google Scholar 

  8. Gorski JJ, Kennedy RD, Hosey AM, Harkin DP (2009) The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clin Cancer Res 15:1514–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes Cancer 39:236–248

    Article  CAS  PubMed  Google Scholar 

  10. Bramley M, Clarke RB, Howell A, Evans DG, Armer T, Baildam AD, Anderson E (2006) Effects of oestrogens and anti-oestrogens on normal breast tissue from women bearing BRCA1 and BRCA2 mutations. Br J Cancer 94:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ritter HD, Antonova L, Mueller CR (2012) The unliganded glucocorticoid receptor positively regulates the tumor suppressor gene BRCA1 through GABP beta. Mol Cancer Res 10:558–569

    Article  CAS  PubMed  Google Scholar 

  12. Antonova L, Mueller CR (2008) Hydrocortisone down-regulates the tumor suppressor gene BRCA1 in mammary cells: a possible molecular link between stress and breast cancer. Genes Chromosomes Cancer 47:341–352

    Article  CAS  PubMed  Google Scholar 

  13. Vilasco M, Communal L, Mourra N, Courtin A, Forgez P, Gompel A (2011) Glucocorticoid receptor and breast cancer. Breast Cancer Res Treat 130:1–10

    Article  CAS  PubMed  Google Scholar 

  14. Pan D, Kocherginsky M, Conzen SD (2011) Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71:6360–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Courtin A, Communal L, Vilasco M, Cimino D, Mourra N, de Bortoli M, Taverna D, Faussat AM, Chaouat M, Forgez P et al (2011) Glucocorticoid receptor activity discriminates between progesterone and medroxyprogesterone acetate effects in breast cells. Breast Cancer Res Treat 131(1):49–63

    Article  PubMed  Google Scholar 

  16. Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280:4117–4124

    Article  CAS  PubMed  Google Scholar 

  17. Moran TJ, Gray S, Mikosz CA, Conzen SD (2000) The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res 60:867–872

    CAS  PubMed  Google Scholar 

  18. Pang D, Kocherginsky M, Krausz T, Kim SY, Conzen SD (2006) Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther 5:933–940

    Article  CAS  PubMed  Google Scholar 

  19. Burnstein KL, Bellingham DL, Jewell CM, Powell-Oliver FE, Cidlowski JA (1991) Autoregulation of glucocorticoid receptor gene expression. Steroids 56:52–58

    Article  CAS  PubMed  Google Scholar 

  20. Govindan MV, Pothier F, Leclerc S, Palaniswami R, Xie B (1991) Human glucocorticoid receptor gene promotor-homologous down regulation. J Steroid Biochem Mol Biol 40:317–323

    Article  CAS  PubMed  Google Scholar 

  21. Galliher-Beckley AJ, Cidlowski JA (2009) Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 61:979–986

    Article  CAS  PubMed  Google Scholar 

  22. Vandevyver S, Dejager L, Libert C (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13:364–374

    Article  CAS  PubMed  Google Scholar 

  23. Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19:1569–1583

    Article  CAS  PubMed  Google Scholar 

  24. Chen W, Dang T, Blind RD, Wang Z, Cavasotto CN, Hittelman AB, Rogatsky I, Logan SK, Garabedian MJ (2008) Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 22:1754–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  26. Malet C, Gompel A, Yaneva H, Cren H, Fidji N, Mowszowicz I, Kuttenn F, Mauvais-Jarvis P (1991) Estradiol and progesterone receptors in cultured normal human breast epithelial cells and fibroblasts: immunocytochemical studies. J Clin Endocrinol Metab 73:8–17

    Article  CAS  PubMed  Google Scholar 

  27. Wan Y, Nordeen SK (2002) Overlapping but distinct gene regulation profiles by glucocorticoids and progestins in human breast cancer cells. Mol Endocrinol 16:1204–1214

    Article  CAS  PubMed  Google Scholar 

  28. Mattern J, Buchler MW, Herr I (2007) Cell cycle arrest by glucocorticoids may protect normal tissue and solid tumors from cancer therapy. Cancer Biol Ther 6:1345–1354

    Article  CAS  PubMed  Google Scholar 

  29. Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276:16649–16654

    Article  CAS  PubMed  Google Scholar 

  30. Yudt MR, Cidlowski JA (2002) The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16:1719–1726

    Article  CAS  PubMed  Google Scholar 

  31. Arnett-Mansfield RL, Graham JD, Hanson AR, Mote PA, Gompel A, Scurr LL, Gava N, de Fazio A, Clarke CL (2007) Focal subnuclear distribution of progesterone receptor is ligand dependent and associated with transcriptional activity. Mol Endocrinol 21:14–29

    Article  CAS  PubMed  Google Scholar 

  32. Yan Y, Haas JP, Kim M, Sgagias MK, Cowan KH (2002) BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem 277:33422–33430

    Article  CAS  PubMed  Google Scholar 

  33. Gilmore PM, McCabe N, Quinn JE, Kennedy RD, Gorski JJ, Andrews HN, McWilliams S, Carty M, Mullan PB, Duprex WP et al (2004) BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase kinase kinase 3. Cancer Res 64:4148–4154

    Article  CAS  PubMed  Google Scholar 

  34. Rennstam K, Ringberg A, Cunliffe HE, Olsson H, Landberg G, Hedenfalk I (2010) Genomic alterations in histopathologically normal breast tissue from BRCA1 mutation carriers may be caused by BRCA1 haploinsufficiency. Genes Chromosomes Cancer 49:78–90

    Article  CAS  PubMed  Google Scholar 

  35. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625

    Article  CAS  PubMed  Google Scholar 

  36. Lillberg K, Verkasalo PK, Kaprio J, Teppo L, Helenius H, Koskenvuo M (2003) Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol 157:415–423

    Article  PubMed  Google Scholar 

  37. Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD, McClintock MK (2009) Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci USA 106:22393–22398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michael YL, Carlson NE, Chlebowski RT, Aickin M, Weihs KL, Ockene JK, Bowen DJ, Ritenbaugh C (2009) Influence of stressors on breast cancer incidence in the Women’s Health Initiative. Health Psychol 28:137–146

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kricker A, Price M, Butow P, Goumas C, Armes JE, Armstrong BK (2009) Effects of life event stress and social support on the odds of a > or =2 cm breast cancer. Cancer Causes Control 20:437–447

    Article  PubMed  Google Scholar 

  40. Communal L, Vilasco M, Hugon-Rodin J, Courtin A, Mourra N, Lahlou N, Dumont S, Chaouat M, Forgez P, Gompel A (2012) Ulipristal acetate does not impact human normal breast tissue. Hum Reprod 27:2785–2798

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Ramires R, Sole X, De Cecco L, Llort G, Cazorla A, Bonifaci N, Garcia MJ, Caldes T, Blanco I, Gariboldi M et al (2009) Gene expression profiling integrated into network modelling reveals heterogeneity in the mechanisms of BRCA1 tumorigenesis. Br J Cancer 101:1469–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takabe S, Mochizuki K, Goda T (2008) De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells. Arch Biochem Biophys 475:1–6

    Article  CAS  PubMed  Google Scholar 

  44. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P (2011) Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145:224–241

    Article  CAS  PubMed  Google Scholar 

  45. Gorski JJ, James CR, Quinn JE, Stewart GE, Staunton KC, Buckley NE, McDyer FA, Kennedy RD, Wilson RH, Mullan PB et al (2010) BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Res Treat 122:721–731

    Article  CAS  PubMed  Google Scholar 

  46. Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP (2011) Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res 39:9536–9548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Javle M, Curtin NJ (2011) The potential for poly (ADP-ribose) polymerase inhibitors in cancer therapy. Ther Adv Med Oncol 3:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from INSERM-UPMC, HRA Pharma, Paris, and the Institut National du Cancer (INCa, France). Laudine Communal was the recipient of a CIFRE grant from HRA Pharma and the government. Myriam Vilasco was the recipient of a post-doc fellowship (INCa). We are very grateful to Sylvie Dumont and Aurélie Scriva for their technical assistance in immunohistochemistry. We thank Steve K. Nordeen (University of Colorado, Denver, USA) for sequences of IEX-1 primers and Wayne V. Vedeckis (University of Louisiana Health Sciences Center, New Orleans, USA) for providing the hGR 1A and 1B promoter constructs. We also thank Dr Alexandre A. Zukiwski, Dr Philippe le Rouzic, and Neil Insdorf for their kind help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Patricia Forgez or Anne Gompel.

Additional information

The members of BRACAPS are listed in the Appendix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4498 kb)

Supplementary material 2 (docx 14 kb)

Appendix

Appendix

The members of BRACAPS are as follows: Jean Feunteun, Université Paris XI, Institut Gustave-Roussy; Suzette Delaloge, Institut Gustave-Roussy; Pascal Pujol, INSERM 824, CHU Arnaud de Villeneuve, Montpellier; Marie-Pierre Chauvet, Centre Oscar Lambret, Lille; Murielle Perrault de Jotemps, Clinique Hartmann, Neuilly; and Marc Chaouat, Hopital Saint Louis, Paris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilasco, M., Communal, L., Hugon-Rodin, J. et al. Loss of glucocorticoid receptor activation is a hallmark of BRCA1-mutated breast tissue. Breast Cancer Res Treat 142, 283–296 (2013). https://doi.org/10.1007/s10549-013-2722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2722-8

Keywords

Navigation