Skip to main content

Advertisement

Log in

Alternative Stimulation Intensities for Mapping Cortical Motor Area with Navigated TMS

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Navigated transcranial magnetic stimulation (nTMS) is becoming a popular tool in pre-operative mapping of functional motor areas. The stimulation intensities used in the mapping are commonly suprathreshold intensities with respect to the patient’s resting motor threshold (rMT). There is no consensus on which suprathreshold intensity should be used nor on the optimal criteria for selecting the appropriate stimulation intensity (SI). In this study, the left motor cortices of 12 right-handed volunteers (8 males, age 24–61 years) were mapped using motor evoked potentials with an SI of 110 and 120 % of rMT and with an upper threshold (UT) estimated by the Mills–Nithi algorithm. The UT was significantly lower than 120 % of rMT (p < 0.001), while no significant difference was observed between UT and 110 % of rMT (p = 0.112). The representation sizes followed a similar trend, i.e. areas computed based on UT (5.9 cm2) and 110 % of rMT (5.0 cm2) being smaller than that of 120 % of rMT (8.8 cm2) (p ≤ 0.001). There was no difference in representation sizes between 110 % of rMT and UT. The variance in representation size was found to be significantly lower with UT compared to 120 % of rMT (p = 0.048, uncorrected), while there was no difference between 110 % of rMT and UT or 120 % of rMT. Indications of lowest inter-individual variation in representation size were observed with UT; this is possibly due to the fact that it takes into account the individual input–output characteristics of the motor cortex. Therefore, the UT seems to be a good option for SI in motor mapping applications to outline functional motor areas with nTMS and it could potentially reduce the inter-individual variation caused by the selection of SI in motor mapping in pre-surgical applications and radiosurgery planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awiszus F (2003) TMS and threshold hunting. Suppl Clin Neurophysiol 56:13–23

    Article  PubMed  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    CAS  PubMed  Google Scholar 

  • Danner N, Julkunen P, Könönen M, Säisänen L, Nurkkala J, Karhu J (2008) Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods 174:116–122

    Article  PubMed  Google Scholar 

  • De Lucia M, Parker GJ, Embleton K, Newton JM, Walsh V (2007) Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation. Neuroimage 36:1159–1170

    Article  PubMed  Google Scholar 

  • Delvaux V, Alagona G, Gérard P, De Pasqua V, Pennisi G, de Noordhout AM (2003) Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin Neurophysiol 114:1217–1225

    Article  PubMed  Google Scholar 

  • Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16:1365–1372

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC, Rothwell JC (1986) Knowledge of motor commands and the recruitment of human motorneurons. Brain 110:1117–1130

    Article  Google Scholar 

  • Julkunen P (2014) Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 232:125–133

    Article  PubMed  Google Scholar 

  • Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795

    Article  PubMed  Google Scholar 

  • Julkunen P, Ruohonen J, Sääskilahti S, Säisänen L, Karhu J (2011) Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clin Neurophysiol 122:975–983

    Article  PubMed  Google Scholar 

  • Julkunen P, Säisänen L, Danner N, Awiszus F, Könönen M (2012) Within-subject effect of coil-to-cortex distance on cortical electric field threshold and motor evoked potentials in transcranial magnetic stimulation. J Neurosci Methods 206:158–164

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Säisänen L, Könönen M, Awiszus F, Julkunen P (2014) On the estimation of silent period thresholds in transcranial magnetic stimulation. Clin Neurophysiol 125:2247–2252

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Pitkänen M, Säisänen L, Julkunen P (2015) Onset latency of motor evoked potentials in motor cortical mapping with neuronavigated transcranial magnetic stimulation. Open Neurol J 9:62–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423

    Article  CAS  PubMed  Google Scholar 

  • Kimiskidis VK, Papagiannopoulos S, Sotirakoglou K, Kazis DA, Dimopoulos G, Kazis A, Mills KR (2004) The repeatability of corticomotor threshold measurements. Clin Neurophysiol 34:259–266

    Article  CAS  Google Scholar 

  • Kozel FA, Nahas Z, deBrux C, Molloy M, Lorberbaum JP, Bohning D, Risch SC, George MS (2000) How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. J Neuropsychiatry Clin Neurosci 12:376–384

    Article  CAS  PubMed  Google Scholar 

  • Laakso I, Hirata A, Ugawa Y (2014) Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys Med Biol 59:203–218

    Article  PubMed  Google Scholar 

  • Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36:2648–2653

    Article  PubMed  Google Scholar 

  • Livingston SC, Ingersoll CD (2008) Intra-rater reliability of a transcranial magnetic stimulation technique to obtain motor evoked potentials. Int J Neurosci 118:239–256

    Article  PubMed  Google Scholar 

  • Mäkelä JP, Vitikainen AM, Lioumis P, Paetau R, Ahtola E, Kuusela L, Valanne L, Blomstedt G, Gaily E (2013) Functional plasticity of the motor cortical structures demonstrated by navigated TMS in two patients with epilepsy. Brain Stimul 6:286–291

    Article  PubMed  Google Scholar 

  • Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Gonzalez Rothi LJ (2006) Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol 117:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576

    Article  CAS  PubMed  Google Scholar 

  • Mishory A, Molnar C, Koola J, Li X, Kozel FA, Myrick H, Stroud Z, Nahas Z, George MS (2004) The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision. J ECT 20:160–165

    Article  PubMed  Google Scholar 

  • Mortifee P, Stewart H, Schulzer M, Eisen A (1994) Reliability of transcranial magnetic stimulation for mapping the human motor cortex. Electroencephalogr Clin Neurophysiol 93:131–137

    Article  CAS  PubMed  Google Scholar 

  • Nieminen JO, Koponen LM, Ilmoniemi RJ (2015) Experimental characterization of the electric field distribution induced by TMS devices. Brain Stimul 8:582–589

    Article  PubMed  Google Scholar 

  • Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A (2011) How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58:849–859

    Article  PubMed  Google Scholar 

  • Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264

    Article  PubMed  Google Scholar 

  • Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W (2014) Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. Neuroimage Clin 4:500–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva WS, Fonoff ET, Marcolin MA, Cabrera HN, Teixeira MJ (2012) Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery. Neuropsychiatr Dis Treat 8:197–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterchev AV, Goetz SM, Westin GG, Luber B, Lisanby SH (2013) Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 124:1364–1372

    Article  PubMed  PubMed Central  Google Scholar 

  • Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69:581–588

    Article  PubMed  Google Scholar 

  • Picht T, Strack V, Schulz J, Zdunczyk A, Frey D, Schmidt S, Vajkoczy P (2012) Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochir 154:2075–2081

    Article  PubMed  Google Scholar 

  • Pitkänen M, Kallioniemi E, Julkunen P (2015) Extent and location of the excitatory and inhibitory cortical hand representation maps: a navigated transcranial magnetic stimulation study. Brain Topogr 28:657–665

    Article  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:97–103

    CAS  PubMed  Google Scholar 

  • Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Clin Neurophysiol 40:7–17

    Article  CAS  Google Scholar 

  • Säisänen L, Julkunen P, Niskanen E, Danner N, Hukkanen T, Lohioja T, Nurkkala J, Mervaala E, Karhu J, Könönen M (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol 25:367–372

    Article  PubMed  Google Scholar 

  • Säisänen L, Könönen M, Julkunen P, Määttä S, Vanninen R, Immonen A, Jutila L, Kälviäinen R, Jääskeläinen JE, Mervaala E (2010) Non-invasive preoperative localization of primary motor cortex in epilepsy surgery by navigated transcranial magnetic stimulation. Epilepsy Res 92:134–144

    Article  PubMed  Google Scholar 

  • Silbert BI, Patterson HI, Pevcic DD, Windnagel KA, Thickbroom GW (2013) A comparison of relative-frequency and threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation. Clin Neurophysiol 124:708–712

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Vajkoczy P, Picht T (2013) Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus 34:E3

    Article  PubMed  Google Scholar 

  • Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Thickbroom GW, Sammut R, Mastaglia FL (1998) Magnetic stimulation mapping of motor cortex: factors contributing to map area. Electroencephalogr Clin Neurophysiol 109:79–84

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL (2004) Motor outcome after subcortical stroke correlates with the degree of cortical reorganization. Clin Neurophysiol 115:2144–2150

    Article  PubMed  Google Scholar 

  • Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54:234–243

    Article  PubMed  Google Scholar 

  • Thordstein M, Saar K, Pegenius G, Elam M (2013) Individual effects of varying stimulation intensity and response criteria on area of activation for different muscles in humans. A study using navigated transcranial magnetic stimulation. Brain Stimul 6:49–53

    Article  PubMed  Google Scholar 

  • Tranulis C, Guéguen B, Pham-Scottez A, Vacheron MN, Cabelguen G, Costantini A, Valero G, Galinovski A (2006) Motor threshold in transcranial magnetic stimulation: comparison of three estimation methods. Clin Neurophysiol 36:1–7

    Article  CAS  Google Scholar 

  • Uy J, Ridding MC, Miles TS (2002) Stability of maps of human motor cortex made with transcranial magnetic stimulation. Brain Topogr 14:293–297

    Article  PubMed  Google Scholar 

  • Van de Ruit M, Grey MJ (2015) The TMS map scales with increased stimulation intensity and muscle activation. Brain Topogr 29(1):56–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45:1025–1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson SA, Thickbroom GW, Mastaglia FL (1993) Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J Neurol Sci 118:134–144

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Butler AJ, Campana GI, Parris TA, Struys DM, Weinstein SR, Weiss P (2004) Intra-subject reliability of parameters contributing to maps generated by transcranial magnetic stimulation in able-bodied adults. Clin Neurophysiol 115:1740–1747

    Article  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus a new landmark. Brain 120:141–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank biostatistician Tuomas Selander, Kuopio University Hospital, for helping us to implement the statistical analyses. The study was funded by the Kaute Foundation, Helsinki, Finland, The Finnish Brain Research and Rehabilitation Center Neuron, Kuopio, Finland, Finnish Concordia Fund, Helsinki, Finland and The Paulo Foundation, Helsinki, Finland. In addition, the authors acknowledge the Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding (project 5041730, Kuopio, Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Kallioniemi.

Ethics declarations

Conflicts of interest

Petro Julkunen has received unrelated consulting pay from Nexstim Plc, manufacturer of the nTMS devices. Elisa Kallioniemi declares that she has no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of the institutional research committee (ethical permission 1/2014) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallioniemi, E., Julkunen, P. Alternative Stimulation Intensities for Mapping Cortical Motor Area with Navigated TMS. Brain Topogr 29, 395–404 (2016). https://doi.org/10.1007/s10548-016-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0470-x

Keywords

Navigation