Skip to main content
Log in

Modulation of EEG Functional Connectivity Networks in Subjects Undergoing Repetitive Transcranial Magnetic Stimulation

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that utilizes magnetic fluxes to alter cortical activity. Continuous theta-burst repetitive TMS (cTBS) results in long-lasting decreases in indices of cortical excitability, and alterations in performance of behavioral tasks. We investigated the effects of cTBS on cortical function via functional connectivity and graph theoretical analysis of EEG data. Thirty-one channel resting-state EEG recordings were obtained before and after 40 s of cTBS stimulation to the left primary motor cortex. Functional connectivity between nodes was assessed in multiple frequency bands using lagged max-covariance, and subsequently thresholded to construct undirected graphs. After cTBS, we find widespread decreases in functional connectivity in the alpha band. There are also simultaneous increases in functional connectivity in the high-beta bands, especially amongst anterior and interhemispheric connections. The analysis of the undirected graphs reveals that interhemispheric and interregional connections are more likely to be modulated after cTBS than local connections. There is also a shift in the topology of network connectivity, with an increase in the clustering coefficient after cTBS in the beta bands, and a decrease in clustering and increase in path length in the alpha band, with the alpha-band connectivity primarily decreased near the site of stimulation. cTBS produces widespread alterations in cortical functional connectivity, with resulting shifts in cortical network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17

    Article  PubMed Central  PubMed  Google Scholar 

  • Bardouille T, Boe S (2012) State-related changes in MEG functional connectivity reveal the task-positive sensorimotor network. PLoS One 7:e48682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20:1685–1696

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29

    Article  PubMed  Google Scholar 

  • Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191:383–402

    Article  PubMed  Google Scholar 

  • Brignani D, Manganotti P, Rossini PM, Miniussi C (2008) Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum Brain Mapp 29:603–612

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  Google Scholar 

  • Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DLW, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375

    PubMed Central  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Chen W-H, Mima T, Siebner HR, Oga T, Hara H, Satow T, Begum T, Nagamine T, Shibasaki H (2003) Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas. Clin Neurophysiol 114:1628–1637

    Article  PubMed  Google Scholar 

  • Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Pilato F, Saturno E, Oliviero A, Dileone M, Mazzone P, Insola A, Tonali PA, Ranieri F, Huang YZ, Rothwell JC (2005) Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol 565:945–950

    Article  PubMed  Google Scholar 

  • Dubovik S, Pignat J-M, Ptak R, Aboulafia T, Allet L, Gillabert N, Magnin C, Albert F, Momjian-Mayor I, Nahum L, Lascano AM, Michel CM, Schnider A, Guggisberg AG (2012) The behavioral significance of coherent resting-state oscillations after stroke. Neuroimage 61:249–257

    Article  PubMed  Google Scholar 

  • Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283

    Article  PubMed  Google Scholar 

  • Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 72:595–603

    Article  PubMed  Google Scholar 

  • Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  CAS  PubMed  Google Scholar 

  • Fuggetta G, Pavone EF, Fiaschi A, Manganotti P (2008) Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum Brain Mapp 29:1–13

    Article  PubMed  Google Scholar 

  • Garcia JO, Grossman ED, Srinivasan R (2011) Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol 106:1734–1746

    Article  PubMed  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808

    Article  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134:1264–1276

    Article  PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50:233–242

    Article  PubMed  Google Scholar 

  • Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamidi M, Slagter HA, Tononi G, Postle BR (2009) Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Front Integr Neurosci 3:14

    Article  PubMed  Google Scholar 

  • He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132:3366–3379

    Article  PubMed  Google Scholar 

  • Herz DM, Christensen MS, Reck C, Florin E, Barbe MT, Stahlhut C, Pauls KAM, Tittgemeyer M, Siebner HR, Timmermann L (2012) Task-specific modulation of effective connectivity during two simple unimanual motor tasks: a 122-channel EEG study. Neuroimage 59:3187–3193

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nat Neurosci 4:953–957

    Article  CAS  PubMed  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. PNAS 106:2035–2040

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540

    Article  CAS  PubMed  Google Scholar 

  • Jin S-H, Lin P, Hallett M (2012) Reorganization of brain functional small-world networks during finger movements. Hum Brain Mapp 33:861–872

    Article  CAS  PubMed  Google Scholar 

  • Jing H, Takigawa M (2000) Observation of EEG coherence after repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Jutras MJ, Fries P, Buffalo EA (2009) Gamma-band synchronization in the macaque hippocampus and memory formation. J Neurosci 29:12521–12531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2004) Modelling the development of cortical systems networks. Neurocomputing 58–60:297–302

    Article  Google Scholar 

  • Khedr EM, Abdel-Fadeil MR, Farghali A, Qaid M (2009) Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. Eur J Neurol 16:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17:1129–1133

    Article  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    Article  PubMed  Google Scholar 

  • Komssi S, Aronen HJ, Huttunen J, Kesäniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32:249–263

    Article  CAS  Google Scholar 

  • Lewis JD, Theilmann RJ, Sereno MI, Townsend J (2009) The relation between connection length and degree of connectivity in young adults: a DTI analysis. Cereb Cortex 19:554–562

    Article  PubMed  Google Scholar 

  • Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26:6096–6102

    Article  CAS  PubMed  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805

    Article  CAS  PubMed  Google Scholar 

  • May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17:205–210

    Article  CAS  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 43:41–58

    Article  CAS  PubMed  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256

    Article  Google Scholar 

  • O’Shea J, Johansen-Berg H, Trief D, Göbel S, Rushworth MFS (2007) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490

    Article  PubMed  Google Scholar 

  • Oliviero A, Strens LHA, Di Lazzaro V, Tonali PA, Brown P (2003) Persistent effects of high frequency repetitive TMS on the coupling between motor areas in the human. Exp Brain Res 149:107–113

    PubMed  Google Scholar 

  • Palva S, Palva JM (2007) New vistas for α-frequency band oscillations. Trends Neurosci 30:150–158

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858

    Article  PubMed  Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G (2003) Induced oscillations in the alpha band: functional meaning. Epilepsia 44(Suppl 12):2–8

    Article  PubMed  Google Scholar 

  • Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P, Hummel F, Gerloff C (2008) Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci 27:1577–1583

    Article  PubMed  Google Scholar 

  • Polanía R, Nitsche MA, Paulus W (2011a) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32:1236–1249

    Article  PubMed  Google Scholar 

  • Polanía R, Paulus W, Antal A, Nitsche MA (2011b) Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 54:2287–2296

    Article  PubMed  Google Scholar 

  • Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331

    Article  PubMed  Google Scholar 

  • Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21:334–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403–416

    Article  PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    Article  PubMed  Google Scholar 

  • Schindler K, Nyffeler T, Wiest R, Hauf M, Mathis J, Hess CW, Müri R (2008) Theta burst transcranial magnetic stimulation is associated with increased EEG synchronization in the stimulated relative to unstimulated cerebral hemisphere. Neurosci Lett 436:31–34

    Article  CAS  PubMed  Google Scholar 

  • Schoonheim MM, Geurts JJG, Landi D, Douw L, Van der Meer ML, Vrenken H, Polman CH, Barkhof F, Stam CJ (2011) Functional connectivity changes in multiple sclerosis patients: A graph analytical study of MEG resting state data. Hum Brain Mapp 34:52–61

    Google Scholar 

  • Shafi MM, Westover MB, Fox MD, Pascual-Leone A (2012) Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur J Neurosci 35:805–825

    Article  PubMed Central  PubMed  Google Scholar 

  • Shu N, Liu Y, Li K, Duan Y, Wang J, Yu C, Dong H, Ye J, He Y (2011) Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 21:2565–2577

    Article  PubMed  Google Scholar 

  • Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  • Silvanto J, Cattaneo Z, Battelli L, Pascual-Leone A (2008) Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. J Neurophysiol 99:2725–2730

    Article  PubMed Central  PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Winter WR, Ding J, Nunez PL (2007) EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166:41–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, De Haan W, Daffertshofer A, Jones BF, Manshanden I, Van Cappellen van Walsum AM, Montez T, Verbunt JPA, De Munck JC, Van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224

    Article  CAS  PubMed  Google Scholar 

  • Stefan K, Gentner R, Zeller D, Dang S, Classen J (2008) Theta-burst stimulation: remote physiological and local behavioral after-effects. Neuroimage 40:265–274

    Article  PubMed  Google Scholar 

  • Strens LHA, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285

    Article  PubMed  Google Scholar 

  • Thut G, Pascual-Leone A (2010) A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 22:219–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30:15915–15926

    Article  PubMed  Google Scholar 

  • Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T (2012) Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 32:17514–17523

    Article  CAS  PubMed  Google Scholar 

  • Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565

    Article  CAS  PubMed  Google Scholar 

  • Walsh V, Pascual-Leone A (2005) Transcranial magnetic stimulation: a neurochronometrics of mind, new edition. The MIT Press, New York

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wheaton LA, Nolte G, Bohlhalter S, Fridman E, Hallett M (2005) Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements. Clin Neurophysiol 116:1382–1390

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work on this study was supported by grants from the National Center for Research Resources: Harvard Clinical and Translational Science Center (UL1 RR025758), Center for Integration of Medicine and Innovative Technology (CIMIT), the Sidney R. Baer, Jr. Foundation, and Nexstim to APL. MMS was supported by funds from the National Center for Research Resources: Harvard Clinical and Translational Science Center (UL1 RR025758), and the Center for Integration of Medicine and Innovative Technology (CIMIT). MBW and SSC receive research support from the NIH/NINDS (RO1-NS062092). LO was supported by NIH fellowship F32MH080493 and 1KL2RR025757-01.

Disclosures

MMS, MBW, LO and SSC report no conflicts of interest. APL serves on the scientific advisory boards for Nexstim, Neuronix, Starlab Neuroscience, Allied Mind, Neosync, and Novavision, and is an inventor on patents and patent applications related to noninvasive brain stimulation and the real-time integration of transcranial magnetic stimulation with electroencephalography and magnetic resonance imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhsin M. Shafi.

Additional information

Mouhsin M. Shafi and M. Brandon Westover contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafi, M.M., Brandon Westover, M., Oberman, L. et al. Modulation of EEG Functional Connectivity Networks in Subjects Undergoing Repetitive Transcranial Magnetic Stimulation. Brain Topogr 27, 172–191 (2014). https://doi.org/10.1007/s10548-013-0277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0277-y

Keywords

Navigation