Skip to main content

Advertisement

Log in

Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine–Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14D (D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken ML, Kosović B, Mirocha JD, Lundquist JK (2014) Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the weather research and forecasting model. J Renew Sustain Energy 6:1529–1539

    Article  Google Scholar 

  • Bellon G, Stevens B (2012) Using the sensitivity of large-eddy simulations to evaluate atmospheric boundary layer models. J Atmos Sci 69:1582–1601

    Article  Google Scholar 

  • Betz A (1926) Windenergie und ihre Ausnutzung durch Windmühlen

  • Calaf M, Meneveau C, Meyers J (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids 22:015110

    Article  Google Scholar 

  • Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Boundary-Layer Meteorol 132:129–149

    Article  Google Scholar 

  • Doyle JD, Gaberšek S, Jiang Q, Bernardet L, Brown JM, Dörnbrack A, Filaus E, Grubišic V, Kirshbaum DJ, Knoth O et al (2011) An intercomparison of t-rex mountain-wave simulations and implications for mesoscale predictability. Mon Weather Rev 139:2811–2831

    Article  Google Scholar 

  • El Kasmi A, Masson C (2008) An extended model for turbulent flow through horizontal-axis wind turbines. J Wind Eng Ind Aerodyn 96:103–122

    Article  Google Scholar 

  • Emeis S (2013) Wind energy meteorology: atmospheric physics for wind power generation. Springer, New York, 198 pp

  • Emeis S (2014) Current issues in wind energy meteorology. Meteorol Appl 21:803–819

    Article  Google Scholar 

  • Fröhlich J (2006) Large eddy simulation turbulenter Strömungen. Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden, 414 pp

  • Froude RE (1889) On the part played in propulsion by difference of fluid pressure. Trans RINA 30:390

    Google Scholar 

  • Glauert H (1963) Airplane propellers. In: Durand WF (ed) Aerodynamic theory. Dover, New York, pp 169–360

    Google Scholar 

  • Gomes VMMGC, Palma JMLM, Lopes AS (2014) Improving actuator disk wake model. In: The science of making torque from wind. Conference series, vol 524, p 012170

  • Grinstein FF, Margolin LG, Rider WJ (2007) Implicit large eddy simulation. Cambridge University Press, Cambridge, 546 pp

  • Hansen MO (2008) Aerodynamics of wind turbines, vol 2. Earthscan, London, 181 pp

  • Heimann D, Käsler Y, Gross G (2011) The wake of a wind turbine and its influence on sound propagation. Meteorol Z 20:449–460

    Article  Google Scholar 

  • Iungo GV, Wu YT, Porté-Agel F (2013) Field measurements of wind turbine wakes with lidars. J Atmos Ocean Technol 30:274–287

    Article  Google Scholar 

  • Ivanell BS, Mikkelsen R, Henningson D (2008) Validation of methods using EllipSys3D. Technical report, KTH, TRITA-MEK vol 12, pp 183–221

  • Käsler Y, Rahm S, Simmet R, Kühn M (2010) Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J Atmos Ocean Technol 27:1529–1532

    Article  Google Scholar 

  • Kataoka H, Mizuno M (2002) Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind Struct 5:379–392

    Article  Google Scholar 

  • Kühnlein C, Smolarkiewicz PK, Dörnbrack A (2012) Modelling atmospheric flows with adaptive moving meshes. J Comput Phys 231:2741–2763

    Article  Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    Article  Google Scholar 

  • Manwell J, McGowan J, Roger A (2002) Wind energy explained: theory, design and application. Wiley, New York, 577 pp

  • Margolin L, Rider W (2002) A rationale for implicit turbulence modelling. Int J Numer Methods Fluids 39:821–841

    Article  Google Scholar 

  • Margolin L, Smolarkiewicz PK, Wyszogrodzki A (2002) Implicit turbulence modeling for high Reynolds number flows. J Fluids Eng 124:862–867

    Article  Google Scholar 

  • Margolin L, Rider W, Grinstein F (2006) Modeling turbulent flow with implicit LES. J Turbul 7:1–27

    Article  Google Scholar 

  • Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9:219–236

    Article  Google Scholar 

  • Meyers J, Meneveau C (2013) Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms. J Fluid Mech 715:335–358

    Article  Google Scholar 

  • Micallef D, Bussel GV, Sant T (2013) An investigation of radial velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy 16:529–544

    Article  Google Scholar 

  • Mikkelsen R (2003) Actuator disc methods applied to wind turbines. PhD thesis, Technical University of Denmark

  • Mirocha J, Kirkil G, Bou-Zeid E, Chow FK, Kosović B (2013) Transition and equilibration of neutral atmospheric boundary layer flow in one-way nested large-eddy simulations using the weather research and forecasting model. Mon Weather Rev 141:918–940

    Article  Google Scholar 

  • Mirocha J, Kosovic B, Aitken M, Lundquist J (2014) Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications. J Renew Sustain Energy 6:013104

    Article  Google Scholar 

  • Muñoz-Esparza D, Kosović B, Mirocha J, van Beeck J (2014) Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary-Layer Meteorol 153:409–440

    Article  Google Scholar 

  • Naughton JW, Heinz S, Balas M, Kelly R, Gopalan H, Lindberg W, Gundling C, Rai R, Sitaraman J, Singh M (2011) Turbulence and the isolated wind turbine. 6th AIAA theoretical fluid mechanics conference. Honolulu, Hawaii, pp 1–19

  • Porté-Agel F, Lu H, Wu YT (2010) A large-eddy simulation framework for wind energy applications. In: The fifth international symposium on computational wind engineering, vol 23–27 (May 2010) Chapel Hill

  • Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA (2008) EULAG, a computational model for multiscale flows. Comput Fluids 37:1193–1207

    Article  Google Scholar 

  • Rankine WJM (1865) On the mechanical principles of the action of propellers. Trans RINA 6:13

    Google Scholar 

  • Schetz JA, Fuhs AE (1996) Handbook of fluid dynamics and fluid machinery. Wiley, New York, 2776 pp

  • Smolarkiewicz PK, Charbonneau P (2013) EULAG, a computational model for multiscale flows: an MHD extension. J Comput Phys 236:608–623

    Article  Google Scholar 

  • Smolarkiewicz PK, Dörnbrack A (2008) Conservative integrals of adiabatic Durran’s equations. Int J Numer Methods Fluids 56:1513–1519

    Article  Google Scholar 

  • Smolarkiewicz PK, Margolin LG (1993) On forward-in-time differencing for fluids: extension to a curvilinear framework. Mon Weather Rev 121:1847–1859

    Article  Google Scholar 

  • Smolarkiewicz PK, Margolin LG (1998) MPDATA: a finite-difference solver for geophysical flows. J Comput Phys 140:459–480

    Article  Google Scholar 

  • Smolarkiewicz PK, Prusa JM (2002) Forward-in-time differencing for fluids: simulation of geophysical turbulence. In: Turbulent flow computation. Kluwer Academic Publishers, Boston, pp 279–312

  • Smolarkiewicz PK, Prusa JM (2005) Towards mesh adaptivity for geophysical turbulence: continuous mapping approach. Int J Numer Methods Fluids 47:789–801

    Article  Google Scholar 

  • Smolarkiewicz PK, Pudykiewicz JA (1992) A class of semi-Lagrangian approximations for fluids. J Atmos Sci 49:2082–2096

    Article  Google Scholar 

  • Smolarkiewicz PK, Winter CL (2010) Pores resolving simulation of Darcy flows. J Comput Phys 229:3121–3133

    Article  Google Scholar 

  • Smolarkiewicz PK, Sharman R, Weil J, Perry SG, Heist D, Bowker G (2007) Building resolving large-eddy simulations and comparison with wind tunnel experiments. J Comput Phys 227:633–653

    Article  Google Scholar 

  • Tossas LAM, Leonardi S (2013) Wind turbine modeling for computational fluid dynamics: December 2010–2012. Pat Moriarty, NREL Technical Monitor, pp 1–48

  • Troldborg N, Sørensen JN, Mikkelsen R (2007) Actuator line simulation of wake of wind turbine operating in turbulent inflow. In: The science of making torque from wind. Conference series, vol 75, p 012063

  • Wedi NP, Smolarkiewicz PK (2004) Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries. J Comput Phys 193:1–20

    Article  Google Scholar 

  • Wedi NP, Smolarkiewicz PK (2006) Direct numerical simulation of the Plumb-McEwan laboratory analog of the QBO. J Atmos Sci 63:3226–3252

    Article  Google Scholar 

  • Wildmann N, Hofsäß M, Weimer F, Joos A, Bange J (2014) MASC—a small remotely piloted aircraft (RPA) for wind energy research. Adv Sci Res 11:55–61

    Article  Google Scholar 

  • Witha B, Steinfeld G, Heinemann D (2014) High-resolution offshore wake simulations with the LES model PALM. Wind energy—impact of turbulence, Spring 2012. Oldenburg, Germany, pp 175–181

  • Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 138:345–366

    Article  Google Scholar 

  • Wu YT, Porté-Agel F (2012) Atmospheric turbulence effects on wind-turbine wakes: an LES study. Energies 5:5340–5362

    Article  Google Scholar 

  • Zhang W, Markfort CD, Porté-Agel F (2012) Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp Fluids 52:1219–1235

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mark Zagar for providing the airfoil data of the 10 MW reference wind turbine from DTU and Fernando Porté-Agel for the constructive discussion on our work in a previous state. This research was performed as part of the LIPS project, funded by the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety by a resolution of the German Federal Parliament. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Englberger.

Appendix: BEM Parameters

Appendix: BEM Parameters

See Table 5.

Table 5 List of the BEM method parameters used in parametrization of type B (10 MW reference wind turbine from DTU) (Mark Zagar (Vestas), personal communication, 2015) and type C (three-blade GWS/EP-6030x3 rotor) (Wu and Porté-Agel 2011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Englberger, A., Dörnbrack, A. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study. Boundary-Layer Meteorol 162, 427–449 (2017). https://doi.org/10.1007/s10546-016-0208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0208-z

Keywords

Navigation