Skip to main content
Log in

Nocturnal Intermittent Coupling Between the Interior of a Pine Forest and the Air Above It

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A 1-year set of measurements of CO2 and energy turbulent fluxes above and within a 25-m pine forest in southern Brazil is analyzed. The study focuses on the coupling state between two levels and its impact on flux determination by the eddy-covariance method. The turbulent series are split in their typical temporal scales using the multiresolution decomposition, a method that allows proper identification of the time scales of the turbulent events. Initially, four case studies are presented: a continually turbulent, a continually calm, a calm then turbulent, and an intermittent night. During transitions from calm to turbulent, large scalar fluxes of opposing signs occur at both levels, suggesting the transference of air accumulated in the canopy during the stagnant period both upwards and downwards. Average fluxes are shown for the entire period as a function of turbulence intensity and a canopy Richardson number, used as an indicator of the canopy coupling state. Above the canopy, CO2 and sensible heat fluxes decrease in magnitude both at the neutral and at the very stable limit, while below the canopy they increase monotonically with the canopy Richardson number. Latent heat fluxes decrease at both levels as the canopy air becomes more stable. The average temporal scales of the turbulent fluxes at both levels approach each other in neutral conditions, indicating that the levels are coupled in that case. Average CO2 fluxes during turbulent periods that succeed very calm ones are appreciably larger than the overall average above the canopy and smaller than the average or negative within the canopy, indicating that the transfer of air accumulated during calm portions at later turbulent intervals affects the flux average. The implications of this process for mean flux determination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo OC, Fitzjarrald DR (2003) In the core of the night—effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorol 106: 1–33

    Article  Google Scholar 

  • Acevedo OC, Moraes OLL, Degrazia GA, Medeiros LE (2006) Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorol 119: 41–55

    Article  Google Scholar 

  • Acevedo OC, Moraes OLL, Fitzjarrald DR, Sakai RK, Mahrt L (2007) Turbulent carbon exchange in very stable conditions. Boundary-Layer Meteorol 125: 49–61

    Article  Google Scholar 

  • Acevedo OC, Moraes OLL, Degrazia GA, Fitzjarrald DR, Manzi AO, Campos JG (2009) Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes?. Agric For Meteorol 149: 1–10

    Article  Google Scholar 

  • Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18(6): 1368–1378

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30: 113–175

    Article  Google Scholar 

  • Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different CARBOEUROFLUX sites. Boundary-Layer Meteorol 116: 63–94

    Article  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150: 655–664

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9: 479–492

    Article  Google Scholar 

  • Baldocchi DD, Meyers TP (1988) A spectral and lag correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorol 45: 31–58

    Article  Google Scholar 

  • Bittencourt S, Corte APD, Sanquetta CR (2004) Estrutura da comunidade de Pteridophyta um uma Floresta Ombrófila Mista, sul do Paraná, Brasil. Silva Lusitana 12(2): 243–254

    Google Scholar 

  • Blanken PD, Black TA, Neumann HH, Hartog GD, Yang PC, Nesic Z, Staebler R, Chen W, Novak MD (1998) Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorol 89(1): 109–140

    Article  Google Scholar 

  • Bosveld FC, Holtslag AAM, Van den Hurk BJJM (1999) Nighttime convection in the interior of a dense Douglas fir forest. Boundary-Layer Meteorol 93: 171–195

    Article  Google Scholar 

  • Campos JG, Acevedo OC, Tota J, Manzi AO (2009) On the temporal scale of the turbulent exchange of carbon dioxide and energy above a tropical rain forest in Amazonia. J Geophys Res 114: D08124

    Article  Google Scholar 

  • Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Boundary-Layer Meteorol 112: 129–157

    Article  Google Scholar 

  • Constantin J, Grelle A, Ibrom A, Morgenstern K (1999) Flux partitioning between understory and overstory in a boreal spruce/pine forest determined by the eddy-covariance method. Agric For Meteorol 98–99: 629–643

    Article  Google Scholar 

  • Costa FD, Acevedo OC, Mombach JCM, Degrazia GA (2011) A simplified model for intermittent turbulence in the nocturnal boundary layer. J Atmos Sci 68(8): 1714–1729

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2 budget in and above a forest canopy. Boundary-Layer Meteorol 113: 201–224

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Mölder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric For Meteorol 148: 12–24

    Article  Google Scholar 

  • Finnigan J (2008) An introduction to flux measurements in difficult conditions. Ecol Appl 18(6): 1340–1350

    Article  Google Scholar 

  • Fitzjarrald DR, Moore KE (1990) Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J Geophys Res 95: 16839–16850

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon storage by long term eddy-correlation: methods and a critical evaluation of accuracy. Glob Chang Biol 2: 169–182

    Article  Google Scholar 

  • Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83: 117–137

    Article  Google Scholar 

  • Kruijt B, Malhi Y, Lloyd J, Nobre AD, Miranda AC, Pereira MGP, Culf A, Grace J (2000) Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorol 94: 297–331

    Article  Google Scholar 

  • Launiainen S, Vesala T, Molder M, Mammarella I, Smolander S, Rannik U, Kolari P, Hari P, Lindroth A, Katul GG (2007) Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus 59: 919–936

    Article  Google Scholar 

  • Law BE, Baldocchi DD, Anthoni PM (1999) Below-canopy soil CO2 fluxes in a ponderosa pine forest. Agric For Meteorol 94: 171–188

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology—a guide for surface flux measurement and analysis. Kluwer, Dordrecht, 264 pp

  • Longhi SJ (1980) A estrutura de uma floresta natural de Araucaria angustifolia (Bert.) O. Ktze, no sul do Brasil. Master thesis, Universidade Federal do Paraná, Brazil

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150: 501–509

    Article  Google Scholar 

  • Mahrt L, Vickers D (2005) Extremely weak mixing in stable conditions. Boundary-Layer Meteorol 119: 19–39

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delaney A, McClean G, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88: 255–278

    Article  Google Scholar 

  • Mahrt L, Lee X, Black B, Neumann H, Staebler RM (2000) Nocturnal mixing in a forest subcanopy. Agric For Meteorol 101: 67–78

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7): 674–693

    Article  Google Scholar 

  • Mammarella I, Kolari P, Rinne J, Keronen P, Pumpanen J, Vesala T (2007) Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus 59: 900–909

    Article  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113: 121–144

    Article  Google Scholar 

  • Misson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Yuste JC, Dorsey JR, Falk M, Granier A, Irvine MR, Jaroz N, Lamaud E, Launiainen S, Law BE, Longdoz B, Loustau D, McKay M, Paw U KT, Vesala T, Vickers D, Wilson KB, Goldstein AH (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144: 14–31

    Article  Google Scholar 

  • Nappo CJ (1991) Sporadic breakdowns of stability in the PBL over simple and complex terrain. Boundary-Layer Meteorol 54: 69–87

    Article  Google Scholar 

  • Paw U KT, Falk M, Suchanek TH, Ustin SL, Chen J, Park Y-S, Winner WE, Thomas C, Hsiao TC, Shaw RH, King TS, Pyles RD, Schroeder M, Matista AA (2004) Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems 7: 513–524

    Article  Google Scholar 

  • Sanquetta CR, Tetto AF (2000) Pinheiro-do-Paraná: lendas e realidades. FUPEF, Curitiba, 112 pp

  • Sanquetta CR, Pizatto W, Netto SP, Eisfeld RL, Filho AF (2001) Dinâmica da estrutura horizontal de um fragmento de Floresta Ombrófila Mista no Centro-Sul do Paraná. Revista Ciências Exatas e Naturais 3(1): 43–57

    Google Scholar 

  • Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122: 139–156

    Article  Google Scholar 

  • Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter R, Frasier S, Ince T, Nappo C, Basley BB, Jensen M, Mahrt L, Miller D, Skelly B (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol 110: 255–279

    Article  Google Scholar 

  • Sun J, Burns S, Delany A, Oncley S, Turnipseed A, Stephens B, Lenschow D, LeMone M, Monson R, Anderson D (2007) CO2 transport over complex terrain. Agric For Meteorol 145: 1–21

    Article  Google Scholar 

  • Tanner C, Thurtell G (1969) Anmoclinometer measurements of Reynold stress and heat transport in the atmospheric surface layer. Research and Development Technical Report, ECOM 66-G220F, Department of Soil Science, University of Wisconsin, Madison, 82 pp

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123: 317–337

    Article  Google Scholar 

  • Tota J, Fitzjarrald DR, Staebler RM, Sakai RK, Moraes OLL, Acevedo OC, Wofsy SC, Manzi A (2008) Amazon rain forest subcanopy flow and the carbon budget: Santarem LBA-ECO site. J Geophys Res 113:G00B02

    Google Scholar 

  • Van de Wiel BJH, Ronda RJ, Moene AF, De Bruin HAR, Holtslag AAM (2002) Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J Atmos Sci 59: 942–958

    Article  Google Scholar 

  • Van Gorsel E, Harman IN, Finnigan JJ, Leuning R (2011) Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange. Agric For Meteorol 151: 927–933

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20: 660–672

    Article  Google Scholar 

  • Voronovich V, Kiely G (2007) On the gap in the spectra of surface-layer atmospheric turbulence. Boundary-Layer Meteorol 122: 67–83

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106: 85–100

    Article  Google Scholar 

  • Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A (2005) Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Meteorol 130: 13–25

    Article  Google Scholar 

  • Yi CX (2008) Momentum transfer within canopies. J Appl Meteorol Climatol 47: 262–275

    Article  Google Scholar 

  • Yi CX, Anderson DE, Turnipseed AA, Burns SP, Sparks JP, Stannard DI, Monson RK (2008) The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest. Ecol Appl 18(6): 1379–1390

    Article  Google Scholar 

  • Zandavalli RB (2006) Importância da competição duranteo estabelecimento e crescimento inicial da Araucaria angustifolia. PhD thesis, Universidade Federal do Rio Grande do Sul, Brazil

  • Zandavalli RB, Dillenburg LR, Souza PVD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25(3): 245–255

    Article  Google Scholar 

  • Zeri M, Rebmann C, Feigenwinter C, Sedlak P (2010) Analysis of periods with strong and coherent CO2 advection over a forested hill. Agric For Meteorol 150: 674–683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo E. S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, P.E.S., Acevedo, O.C., Moraes, O.L.L. et al. Nocturnal Intermittent Coupling Between the Interior of a Pine Forest and the Air Above It. Boundary-Layer Meteorol 146, 45–64 (2013). https://doi.org/10.1007/s10546-012-9756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9756-z

Keywords

Navigation