Skip to main content
Log in

Dispersion of Heavy Particles Emitted from Area Sources in the Unstable Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Reliable predictions of the daytime dispersal of heavy particles in the unstable atmospheric boundary layer are important in a variety of disciplines. For many applications, particles disperse from area sources near the ground, and corresponding theoretical solutions are desired to reveal insight into the physical processes. Here, theoretical solutions recently developed for neutral conditions are modified to include the effects of atmospheric instability. The Obukhov length L O and convection velocity w are introduced to characterize the patterns of particle dispersion, in additional to friction velocity u and settling velocity w s used in the neutral case. The major effects of atmospheric instability are accounted for by modifying the vertical velocity variance profile and considering the ratio of velocity scales w /u . Theoretical predictions including the mean concentration profile, plume height, and horizontal transport above the source, and ground deposition flux downwind from the source agree well with large-eddy simulation results while the particle plume is within the atmospheric surface layer. The deposition curve is characterized by a power-law decay whose exponent depends on u , w s, and w . A second steeper power-law develops once the plume extends into the mixed layer. This effect is enhanced with increasing atmospheric instability, implying that particles disperse farther from the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol 55. Dover, New York, 1046 pp

  • Aylor DE, Flesch TK (2001) Estimating spore release rates using a Lagrangian stochastic simulation model. J Appl Meteorol 40(7): 1196–1208

    Article  Google Scholar 

  • Aylor DE, Schultes NP, Shields EJ (2003) An aerobiological framework for assessing cross-pollination in maize. Agric For Meteorol 119(3–4): 111–129

    Article  Google Scholar 

  • Aylor DE, Boehm MT, Shields EJ (2006) Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modeling. J Appl Meteorol Climatol 45(7): 1003–1015

    Article  Google Scholar 

  • Bagnold RA (1971) The physics of blown sand and desert dunes. Chapman & Hall, New York, p 265

    Book  Google Scholar 

  • Boehm MT, Aylor DE (2005) Lagrangian stochastic modeling of heavy particle transport in the convective boundary layer. Atmos Environ 39(27): 4841–4850

    Article  Google Scholar 

  • Boehm MT, Aylor DE, Shields EJ (2008) Maize pollen dispersal under convective conditions. J Appl Meteorol Climatol 47(1): 291–307

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40(2): 1–18

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105. doi:10.1063/1.1839152

    Article  Google Scholar 

  • Bouvet T, Wilson JD (2006) An approximate analytical solution for the deposition of heavy particles released from an elevated line source. Boundary-Layer Meteorol 119(1): 1–18

    Article  Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581): 537–541

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. D. Reidel, Dordrecht, 299 pp

  • Cai X, Zhang R, Li Y (2006) A large-eddy simulation and Lagrangian stochastic study of heavy particle dispersion in the convective boundary layer. Boundary-Layer Meteorol 120(3): 413–435

    Article  Google Scholar 

  • Calder K (1961) Atmospheric diffusion of particulate material, considered as a boundary value problem. J Atmos Sci 18: 413–415

    Google Scholar 

  • Chamberlain AC (1967) Transport of lycopodium spores and other small particles to rough surfaces. Proc R Soc Lond A 296(1444): 45–70

    Article  Google Scholar 

  • Chamecki M (2012) An analytical solution for dispersion of biological particles emitted from area sources: inclusion of dispersion in the crosswind direction. Agric For Meteorol 157: 30–38

    Article  Google Scholar 

  • Chamecki M, Meneveau C (2011) Particle boundary layer above and downstream of an area source: scaling, simulations, and pollen transport. J Fluid Mech 683(1): 1–26

    Article  Google Scholar 

  • Chamecki M, Van Hout R, Meneveau C, Parlange MB (2007) Concentration profiles of particles settling in the neutral and stratified atmospheric boundary layer. Boundary-Layer Meteorol 125(1): 25–38

    Article  Google Scholar 

  • Chamecki M, Meneveau C, Parlange MB (2008) A hybrid spectral/finite-volume algorithm for large-eddy simulation of scalars in the atmospheric boundary layer. Boundary-Layer Meteorol 128(3): 473–484

    Article  Google Scholar 

  • Chamecki M, Meneveau C, Parlange MB (2009) Large eddy simulation of pollen transport in the atmospheric boundary layer. J Aerosol Sci 40(3): 241–255

    Article  Google Scholar 

  • Chamecki M, Dufault NS, Isard SA (2012) Atmospheric dispersion of wheat rust spores: a new theoretical framework to interpret field data and estimate downwind dispersion. J Appl Meteorol Climatol 51: 672–685

    Article  Google Scholar 

  • Dupont S, Brunet Y, Jarosz N (2006) Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies. Agric For Meteorol 141(2–4): 82–104

    Article  Google Scholar 

  • Frost R (1946) Turbulence and diffusion in the lower atmosphere. Proc R Soc Lond A 186(1004): 20–35

    Article  Google Scholar 

  • Gage SH, Isard SA, Colunga GM (1999) Ecological scaling of aerobiological dispersal processes. Agric For Meteorol 97(4): 249–261

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, UK, p 316

    Google Scholar 

  • Godson WL (1958) The diffusion of particulate matter from an elevated source. Meteorol Atmos Phys 10(4): 305–327

    Google Scholar 

  • Horst TW (1979) Lagrangian similarity modeling of vertical diffusion from a ground-level source. J Appl Meteorol 18(6): 733–740

    Article  Google Scholar 

  • Horst TW (1984) The modification of plume models to account for dry deposition. Boundary-Layer Meteorol 30(1): 413–430

    Article  Google Scholar 

  • Jarosz N, Loubet B, Durand B, Mccartney A, Foueillassar X, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agric For Meteorol 119(1–2): 37–51

    Article  Google Scholar 

  • Jarosz N, Loubet B, Huber L (2004) Modelling airborne concentration and deposition rate of maize pollen. Atmos Environ 38(33): 5555–5566

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D, Horn HS, Levin SA (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 166(3): 368–381

    Article  Google Scholar 

  • Kind RJ (1992) One-dimensional aeolian suspension above beds of loose particles—a new concentration-profile equation. Atmos Environ A 26(5): 927–931

    Article  Google Scholar 

  • Klein EK, Lavigne C, Foueillassar X, Gouyon PH, Larédo C (2003) Corn pollen dispersal: Quasi-mechanistic models and field experiments. Ecol Monogr 73(1): 131–150

    Article  Google Scholar 

  • Klein EK, Lavigne C, Picault H, Renard M, GOUYON PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 43(1): 141–151

    Article  Google Scholar 

  • Kleissl J, Kumar V, Meneveau C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res 42: W06D10. doi:10.1029/2005WR004685

    Article  Google Scholar 

  • Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42: W06D09. doi:10.1029/2005WR004651

    Article  Google Scholar 

  • Lavigne C, Klein EK, Vallée P, Pierre J, Godelle B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96(6): 886–896

    Article  Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst 34: 575–604

    Article  Google Scholar 

  • Mundt CC, Leonard KJ (1985) A modification of Gregory’s model for describing plant disease gradients. Phytopathology 75(8): 930–935

    Article  Google Scholar 

  • Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70(2): 329–338

    Article  Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol 11(3): 355–361

    Article  Google Scholar 

  • Pasquill F, Smith FB (1983) Atmospheric diffusion. Wiley, New York, p 437

    Google Scholar 

  • Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of african dust on the environment of the southeastern united states. Proc Natl Acad Sci USA 96(7): 3396–3403

    Article  Google Scholar 

  • Rounds W (1955) Solutions of the two-dimensional diffusion equations. Trans Am Geophys Union 36: 395–405

    Article  Google Scholar 

  • Schmidt RA (1982) Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary-Layer Meteorol 23(2): 223–246

    Article  Google Scholar 

  • Smith RB (2008) A K-theory of dispersion, settling and deposition in the atmospheric surface layer. Boundary-Layer Meteorol 129(3): 371–393

    Article  Google Scholar 

  • Sutton WGL (1943) On the equation of diffusion in a turbulent medium. Proc R Soc Lond A 186: 48–75

    Google Scholar 

  • Tennekes H, Lumley J (1972) A first course in turbulence. MIT Press, Cambridge, Mass, p 300

    Google Scholar 

  • Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology 37(1): 129–148

    Article  Google Scholar 

  • van Ulden AP (1978) Simple estimates for vertical diffusion from sources near the ground. Atmos Environ 12(11): 2125–2129

    Article  Google Scholar 

  • Weil JC, Sullivan PP, Moeng CH (2004) The use of large-eddy simulations in Lagrangian particle dispersion models. J Atmos Sci 61: 2877–2887

    Article  Google Scholar 

  • Wilson JD (2000) Trajectory models for heavy particles in atmospheric turbulence: comparison with observations. J Appl Meteorol 39(11): 1894–1912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Chamecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Chamecki, M. & Isard, S.A. Dispersion of Heavy Particles Emitted from Area Sources in the Unstable Atmospheric Boundary Layer. Boundary-Layer Meteorol 146, 235–256 (2013). https://doi.org/10.1007/s10546-012-9753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9753-2

Keywords

Navigation