Skip to main content
Log in

Lysosomal delivery of therapeutic enzymes in cell models of Fabry disease

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

The success of enzymatic replacement in Gaucher disease has stimulated development of targeted protein replacement for other lysosomal disorders, including Anderson-Fabry disease, which causes fatal cardiac, cerebrovascular and renal injury: deficiency of lysosomal α-Galactosidase A induces accumulation of glycosphingolipids. Endothelial cell storage was the primary endpoint in a clinical trial that led to market authorization. Two α-Galactosidase A preparations are licensed worldwide, but fatal outcomes persist, with storage remaining in many tissues. We compare mechanisms of uptake of α -Galactosidase A into cells relevant to Fabry disease, in order to investigate if the enzyme is targeted to the lysosomes in a mannose-6-phosphate receptor dependent fashion, as generally believed. α -Galactosidase A uptake was examined in fibroblasts, four different endothelial cell models, and hepatic cells in vitro. Uptake of europium-labeled human α -Galactosidase A was measured by time-resolved fluorescence. Ligand-specific uptake was quantified in inhibitor studies. Targeting to the lysosome was determined by precipitation and by confocal microscopy. The quantity and location of cation-independent mannose-6-phosphate receptors in the different cell models were investigated using confocal microscopy. Uptake and delivery of α -Galactosidase A to lysosomes in fibroblasts is mediated by the canonical mannose-6-phosphate receptor pathway, but in endothelial cells in vitro this mechanism does not operate. Moreover, this observation is supported by a striking paucity of expression of cation independent mannose-6-phosphate receptors on the plasma membrane of the four endothelial cell models and by little delivery of enzyme to lysosomes, when compared with fibroblasts. If these observations are confirmed in vivo, alternative mechanisms will be needed to explain the ready clearance of storage from endothelial cells in patients undergoing enzyme replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aden DP, Fogel A et al (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282(5739):615–616

    Article  PubMed  CAS  Google Scholar 

  • Aerts JM, Groener JE et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105(8):2812–2817

    Article  PubMed  CAS  Google Scholar 

  • Barbey F, Brakch N et al (2006) Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 26(4):839–844

    Article  PubMed  CAS  Google Scholar 

  • Berger HU et al (1974) Methods of enzymatic analysis. Academic Press, New York, pp 495-496

  • Bishop DF, Desnick RJ (1981) Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. J Biol Chem 256(3):1307–1316

    PubMed  CAS  Google Scholar 

  • Blom D, Speijer D et al (2003) Recombinant enzyme therapy for Fabry disease: absence of editing of human alpha-galactosidase A mRNA. Am J Hum Genet 72(1):23–31

    Article  PubMed  CAS  Google Scholar 

  • Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232

    Article  PubMed  CAS  Google Scholar 

  • Boutouyrie P, Laurent S et al (2002) Arterial remodelling in Fabry disease. Acta Paediatr Suppl 91(439):62–66

    Article  PubMed  CAS  Google Scholar 

  • Breunig F, Wanner C (2008) Update on Fabry disease: kidney involvement, renal progression and enzyme replacement therapy. J Nephrol 21(1):32–37

    PubMed  Google Scholar 

  • Christensen EI, Zhou Q et al (2007) Distribution of alpha-galactosidase A in normal human kidney and renal accumulation and distribution of recombinant alpha-galactosidase A in Fabry mice. J Am Soc Nephrol 18(3):698–706

    Article  PubMed  CAS  Google Scholar 

  • Clarke JT (1981) The glycosphingolipids of human plasma lipoproteins. Can J Biochem 59(6):412–417

    Article  PubMed  CAS  Google Scholar 

  • Clarke JT (2007) Narrative review: Fabry disease. Ann Intern Med 146(6):425–433

    PubMed  Google Scholar 

  • Clarke JT, Stoltz JM et al (1976) Neutral glycosphingolipids of serum lipoproteins in Fabry's disease. Biochim Biophys Acta 431(2):317–325

    Article  PubMed  CAS  Google Scholar 

  • Clarke JT, Stoltz JM et al (1980) Stability of plasma low density lipoprotein with abnormal glycolipid composition from patients with Fabry's disease. Atherosclerosis 35(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM, Hancock MK (2002) P-type lectins. Biochim Biophys Acta 1572(2–3):317–340

    Article  PubMed  CAS  Google Scholar 

  • Darlington GJ, Kelly JH et al (1987) Growth and hepatospecific gene expression of human hepatoma cells in a defined medium. Vitro Cell Dev Biol 23(5):349–354

    Article  CAS  Google Scholar 

  • Deegan PB, Baehner AF et al (2006) Natural history of Fabry disease in females in the Fabry outcome survey. J Med Genet 43(4):347–352

    Article  PubMed  CAS  Google Scholar 

  • DeLisser HM, Yan HC et al (1993) Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J Biol Chem 268(21):16037–16046

    PubMed  CAS  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM (2001) α-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 8th ed. Vol. 3:3733–74

  • Desnick RJ (2001) Enzyme replacement and beyond. J Inherit Metab Dis 24(2):251–265

    Article  PubMed  CAS  Google Scholar 

  • Elleder M (1985) Fabry's disease: absence of storage as a feature of liver sinus endothelium. Acta Histochem 77(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Elleder M (2003) Sequelae of storage in Fabry disease--pathology and comparison with other lysosomal storage diseases. Acta Paediatr Suppl 92(443):46–53, discussion 45

    PubMed  CAS  Google Scholar 

  • Elleder M, Ledvinova J et al (1990) An atypical ultrastructural pattern in Fabry's disease: a study on its nature and incidence in 7 cases. Ultrastruct Pathol 14(6):467–474

    Article  PubMed  CAS  Google Scholar 

  • Elsea SH, Lucas RE (2002) The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J 43(2):66–79

    PubMed  CAS  Google Scholar 

  • Eng CM, Guffon N et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A–replacement therapy in Fabry's disease. N Engl J Med 345(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Fellgiebel A, Muller MJ et al (2006) CNS manifestations of Fabry's disease. Lancet Neurol 5(9):791–795

    Article  PubMed  Google Scholar 

  • Ghosh P, Dahms NM et al (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4(3):202–212

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg L, Manara R et al (2006) Magnetic resonance imaging changes in Fabry disease. Acta Paediatr Suppl 95(451):57–62

    Article  PubMed  Google Scholar 

  • Grabowski GA, Hopkin RJ (2003) Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 4:403–436

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Ford T et al (1994) The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal Biochem 220(2):367–373

    Article  PubMed  CAS  Google Scholar 

  • Grewal RP (1994) Stroke in Fabry's disease. J Neurol 241(3):153–156

    Article  PubMed  CAS  Google Scholar 

  • Gubler MC, Lenoir G et al (1978) Early renal changes in hemizygous and heterozygous patients with Fabry's disease. Kidney Int 13(3):223–235

    Article  PubMed  CAS  Google Scholar 

  • Hasholt L, Wandall A et al (1988) Enzyme replacement in Fabry endothelial cells and fibroblasts: uptake experiments and electron microscopical studies. Clin Genet 33(5):360–371

    Article  PubMed  CAS  Google Scholar 

  • Haslett C, Guthrie LA et al (1985) Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol 119(1):101–110

    PubMed  CAS  Google Scholar 

  • Hilz MJ, Kolodny EH et al (2004) Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease. J Neurol 251(5):564–570

    Article  PubMed  Google Scholar 

  • Kalliokoski RJ, Kalliokoski KK et al (2006) Structural and functional changes in peripheral vasculature of Fabry patients. J Inherit Metab Dis 29(5):660–666

    Article  PubMed  Google Scholar 

  • Karen JK, Hale EK et al (2005) Angiokeratoma corporis diffusum (Fabry disease). Dermatol Online J 11(4):8

    PubMed  Google Scholar 

  • Keller H, Niggli V (1995) Effects of cytochalasin D on shape and fluid pinocytosis in human neutrophils as related to cytoskeletal changes (actin, alpha-actinin and microtubules). Eur J Cell Biol 66(2):157–164

    PubMed  CAS  Google Scholar 

  • Keslova-Veselikova J, Hulkova H et al (2008) Replacement of alpha-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients. Virchows Arch 452(6):651–665

    Article  PubMed  CAS  Google Scholar 

  • Knowles BB, Howe CC et al (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209(4455):497–499

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Jin X et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13(4):305–313

    Article  PubMed  Google Scholar 

  • Li Q, Lau A et al (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24(16):4070–4081

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Weisdorf D, Solovey A, Hebbel RP (2000a) Origins of circulating endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Weisdorf DJ et al (2000b) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Chang L et al (2002) Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 99(2):457–462

    Article  PubMed  CAS  Google Scholar 

  • Mayes JS, Scheerer JB et al (1981) Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry's disease. Clin Chim Acta 112(2):247–251

    Article  PubMed  CAS  Google Scholar 

  • Medin JA, Tudor M et al (1996) Correction in trans for Fabry disease: expression, secretion and uptake of alpha-galactosidase A in patient-derived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci U S A 93(15):7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Moore DF, Scott LT et al (2001) Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation 104(13):1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Moore DF, Kaneski CR et al (2007) The cerebral vasculopathy of Fabry disease. J Neurol Sci 257(1–2):258–263

    Article  PubMed  Google Scholar 

  • Nguyen TT, Gin T et al (2005) Ophthalmological manifestations of Fabry disease: a survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Experiment Ophthalmol 33(2):164–168

    Article  PubMed  Google Scholar 

  • Parkkila S, Parkkila AK et al (1993) Competitive time-resolved immunofluorometric assay for quantifying carbonic anhydrase VI in saliva. Clin Chem 39(10):2154–2157

    PubMed  CAS  Google Scholar 

  • Prabakaran T, Nielsen R et al (2011) Receptor-Mediated Endocytosis of alpha-Galactosidase A in Human Podocytes in Fabry Disease. PLoS One 6(9):e25065

    Article  PubMed  CAS  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba H, Murata-Ohsawa M et al (2006) Comparison of the effects of agalsidase alfa and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 51(3):180–188

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Murray GJ et al (2000) Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Natl Acad Sci U S A 97(1):365–370

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Kopp JB et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama 285(21):2743–2749

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Rapkiewicz A et al (2006) Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch 448(3):337–343

    Article  PubMed  Google Scholar 

  • Shen JS, Meng XL et al (2007) Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab 92(1–2):137–144

    Article  PubMed  CAS  Google Scholar 

  • Sheppard MN, Cane P et al (2010) A detailed pathologic examination of heart tissue from three older patients with Anderson-Fabry disease on enzyme replacement therapy. Cardiovasc Pathol 19(5):293–301

    Article  PubMed  Google Scholar 

  • Sleat DE, Wang Y et al (2006) Identification and validation of mannose 6-phosphate glycoproteins in human plasma reveal a wide range of lysosomal and non-lysosomal proteins. Mol Cell Proteomics 5(10):1942–1956

    Article  PubMed  CAS  Google Scholar 

  • Sodi A, Ioannidis AS et al (2007) Ocular manifestations of Fabry's disease: data from the Fabry outcome survey. Br J Ophthalmol 91(2):210–214

    Article  PubMed  Google Scholar 

  • Speert DP, Silverstein SC (1985) Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol 38(5):655–658

    PubMed  CAS  Google Scholar 

  • Synnes M, Prydz K et al (1999) Fluid phase endocytosis and galactosyl receptor-mediated endocytosis employ different early endosomes. Biochim Biophys Acta 1421(2):317–328

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu S, Fukuta K et al (2003) Monitoring biodistribution of glycoproteins with modified sugar chains. Biochim Biophys Acta 1622(3):179–191

    Article  PubMed  CAS  Google Scholar 

  • Thurberg BL, Randolph Byers H et al (2004) Monitoring the 3-year efficacy of enzyme replacement therapy in fabry disease by repeated skin biopsies. J Invest Dermatol 122(4):900–908

    Article  PubMed  CAS  Google Scholar 

  • Wagner SJ, Myrup AC (2005) Toward closed-system culture of blood origin endothelial cells. Transfusion 45(7):1201–1207

    Article  PubMed  Google Scholar 

  • Wang CH, Cherng WJ et al (2008) Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol 28(1):54–60

    Article  PubMed  Google Scholar 

  • Wilcox WR (2004) Lysosomal storage disorders: the need for better pediatric recognition and comprehensive care. J Pediatr 144(5 Suppl):S3–S14

    PubMed  Google Scholar 

  • Wilcox WR, Banikazemi M et al (2004) Long-term safety and efficacy of enzyme replacement therapyfor fabry disease. Am J Hum Genet 75(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Robinson CE et al (1995) Cloning and characterization of the murine activin receptor like kinase-1 (ALK-1) homolog. Biochem Biophys Res Commun 216(1):78–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Society for Mucopolysaccharide Diseases for essential moral and financial support for the project. This work was partly supported by grants from the Cambridge Biomedical Research Centre (Metabolic Theme) funded by the National Institute of Health Research, UK. We wish to thank Prof. R. Schiffmann and Dr. C. R. Kaneski who kindly provided the Immortalized Fabry Endothelial cell line-1 (IMFE-1), Maria del Mar Roldan Ortiz for her expert technical assistance in cell culturie and Prof. N Morrell and Dr. Xudong Yang for providing us with Human Pulmonary Arthery Endothelial cells (HPAEC).

Conflict of interest

This work was partly supported by the Society for Mucopolysaccharide Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Deegan.

Additional information

Communicated by: Robin Lachmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesan, D., Cox, T.M. & Deegan, P.B. Lysosomal delivery of therapeutic enzymes in cell models of Fabry disease. J Inherit Metab Dis 35, 1107–1117 (2012). https://doi.org/10.1007/s10545-012-9472-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9472-3

Keywords

Navigation