Skip to main content
Log in

Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • G. Adriani, M.D. de Tullio, M. Ferrari, F. Hussain, G. Pascazio, X. Liu, P. Decuzzi, The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials 33(22), 5504–5513 (2012)

    Article  Google Scholar 

  • D. Akin, J. Sturgis, K. Ragheb, D. Sherman, K. Burkholder, J.P. Robinson, A.K. Bhunia, S. Mohammed, R. Bashir, Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007)

    Article  Google Scholar 

  • C.S. Barker, B.M. Prüß, P. Matsumura, Increased motility of escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J. Bacteriol. 186, 7529–7537 (2004)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl. Phys. Lett. 90, 023902–023902–023903 (2007)

  • H.C. Berg (1993) Random walks in biology: Princeton University Press.

  • D.A. Canelas, K.P. Herlihy, J.M. DeSimone, Top‐down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 391–404 (2009)

    Article  Google Scholar 

  • J.A. Champion, Y.K. Katare, S. Mitragotri, Making polymeric micro-and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. 104, 11901–11904 (2007)

    Article  Google Scholar 

  • H.-P. Cheng, G.C. Walker, Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa byRhizobium meliloti. J. Bacteriol. 180, 5183–5191 (1998)

    Google Scholar 

  • N. Darnton, L. Turner, K. Breuer, H.C. Berg, Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004)

    Article  Google Scholar 

  • P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2009)

    Article  Google Scholar 

  • M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  Google Scholar 

  • Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007)

    Article  Google Scholar 

  • S.E. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105, 11613–11618 (2008)

    Article  Google Scholar 

  • R.W. Kasinskas, N.S. Forbes, Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007)

    Article  Google Scholar 

  • S. Leschner, S. Weiss, Salmonella—allies in the fight against cancer. J. Mol. Med. 88, 763–773 (2010)

    Article  Google Scholar 

  • H. Loessner, A. Endmann, S. Leschner, K. Westphal, M. Rohde, T. Miloud, G. Hämmerling, K. Neuhaus, S. Weiss, Remote control of tumour‐targeted Salmonella enterica serovar Typhimurium by the use of l‐arabinose as inducer of bacterial gene expression in vivo. Cell. Microbiol. 9, 1529–1537 (2007)

    Article  Google Scholar 

  • H. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. 100, 5449–5454 (2003)

    Article  Google Scholar 

  • S. Martel, C.C. Tremblay, S. Ngakeng, G. Langlois, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904–233904–233903 (2006)

  • S. Muro, C. Garnacho, J.A. Champion, J. Leferovich, C. Gajewski, E.H. Schuchman, S. Mitragotri, V.R. Muzykantov, Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16, 1450–1458 (2008)

    Article  Google Scholar 

  • S.J. Park, H. Bae, J. Kim, B. Lim, J. Park, S. Park, Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion. Lab Chip 10, 1706–1711 (2010)

    Article  Google Scholar 

  • J.M. Pawelek, K.B. Low, D. Bermudes, Bacteria as tumour-targeting vectors. The Lancet Oncology 4, 548–556 (2003)

    Article  Google Scholar 

  • D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  Google Scholar 

  • A. Sahari, D. Headen, B. Behkam, Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed. Microdevices 14, 999–1007 (2012)

    Article  Google Scholar 

  • J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular cloning, Cold Spring Harbor Laboratory Press, New York, 1989

  • J.E. Segall, S.M. Block, H.C. Berg, Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. 83, 8987–8991 (1986)

    Article  Google Scholar 

  • M.S. Springer, M.F. Goy, J. Adler, Sensory transduction in escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. 74, 3312–3316 (1977)

    Article  Google Scholar 

  • E. Steager, C.-B. Kim, J. Patel, S. Bith, C. Naik, V. Reber, M.J. Kim, Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl. Phys. Lett. 90, 263901–263901–263903 (2007)

  • J. Stritzker, S. Weibel, P.J. Hill, T.A. Oelschlaeger, W. Goebel, A.A. Szalay, Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli nissle 1917 in live mice. Int. J. Med. Microbiol. 297, 151–162 (2007)

    Article  Google Scholar 

  • L. Tao, W. Hu, Y. Liu, G. Huang, B.D. Sumer, J. Gao, Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp. Biol. Med. 236, 20–29 (2011)

    Article  Google Scholar 

  • M.A. Traore, B. Behkam, A PEG-DA microfluidic device for chemotaxis studies. J. Micromech. Microeng. 23, 085014 (2013)

    Article  Google Scholar 

  • M.A. Traoré, A. Sahari, B. Behkam, Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead. Phys. Rev. E. 84, 061908 (2011)

    Article  Google Scholar 

  • P.C. Weber, D. Ohlendorf, J. Wendoloski, F. Salemme, Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Brian Geuther for helping with the developing of the graphics and Ivan Morozov for the photographs of the device. Our gratitude also goes to our other colleagues in the MicroN BASE laboratory at Virginia Tech especially Meghan A. Canter for helping with particle stretching. This work was in part supported by the National Science Foundation (IIS-117519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Behkam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahari, A., Traore, M.A., Scharf, B.E. et al. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed Microdevices 16, 717–725 (2014). https://doi.org/10.1007/s10544-014-9876-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9876-y

Keywords

Navigation