Skip to main content
Log in

Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper discusses the vortical flow, mixing and cell culture of Pichia pastoris using a centrifugal microfluidic (CM) chamber. The resultant “spiral toroidal vortex” in the chamber is made up of a primary vortex induced from inertial acceleration/deceleration of the chamber superposed by a secondary toroidal vortex due to Coriolis acceleration acting on the primary vortex. A validated numerical fluid-flow model with minimized numerical diffusion effect has been developed to investigate the flow and consequently mixing of two-color liquids through cyclic constant acceleration-and-deceleration in the same rotation direction until homogeneous mixing of the two liquids in the CM chamber has been established. The specific mixing time is found to improve with increase in acceleration/deceleration and angular span of the chamber. An experimental CM platform with three cell-culture chambers of different angular spans has been built and Pichia pastoris cell culture has been successfully demonstrated. Cell growth can be monitored over time on the extracted samples by measuring the optical density at 600-nm wave-length. Comparing with conventional cell culture, Pichia pastoris cultured on CM platform exhibits a very short lag (cell preparation/budding) phase prior to the log phase (cell growth). While it takes 8 to 12 h for the conventional shake flask in the lag phase, it takes only 2 h for the CM platform irrespective of initial cell concentration (8.1 × 104 to 8.1 × 105/ml), acceleration/deceleration (10 to 32/s2) and angular span of the culture chamber (π/12 to π/4), representing significant time reduction. This is largely attributed to better growth conditions due to enhanced mixing and appropriate shear-stress stimulation from the efficient spiral toroidal vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C :

Concentration (g/m3)

D :

Diffusion coefficient (m2/s)

H :

Height of chamber (m)

MT :

Mixing time when the mixing quality α reaches 90 % (s)

P :

Pressure (Pa)

q :

Velocity vector (m/s)

r :

Radial coordinate (m)

SMT :

Specific mixing time (s/L)

t :

Time variable (s)

V :

Chamber volume (m3)

z :

Vertical coordinate (m)

α :

Mixing quality (−)

θ :

Angular span of chamber (rad)

ν:

Kinematic viscosity (m2/s)

ρ :

Fluid density (kg/m3)

σ:

Standard deviation (−)

ϕ :

Azimuthal coordinate (rad)

Ω :

Rotation speed (rad/s)

i :

Grid location, also inner

M :

Maximum value

o :

Outer

References

  • A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, C. Lim, Microfluidics for cell separation. Med. Biol. Eng. Comput. 48(10), 999–1014 (2010)

    Article  Google Scholar 

  • M.R. Bringer, C.J. Gerdts, H. Song, J.D. Tice, R.F. Ismagilov, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos. Trans. R. Soc. London, Ser. A 362, 1087–1104 (2004)

    Article  Google Scholar 

  • D. Chakraborty, M. Madou, S. Chakraborty, Anomalous mixing behavior in rotationally actuated microfluidic devices. Lab Chip 11, 2823–2826 (2011)

    Article  Google Scholar 

  • W.J. Chang, D. Akin, M. Sedlak, M.R. Ladisch, R. Bashir, Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture. Biomed. Microdev. 5, 281–290 (2003)

    Article  Google Scholar 

  • J.M. Cregg, I. Tolstorukov, A. Kusari, J. Sunga, K. Madden, T. Chappell, Expression in the yeast Pichia pastoris. Meth. Enzymol. 463, 169–189 (2009)

    Article  Google Scholar 

  • J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. Stetten, R. Zengerle, The centrifugal microfluidic bio-disk platform. J. Micromech. Microeng. 17, 103–115 (2007)

    Article  Google Scholar 

  • K.N. Faber, W. Harder, M. Veenhuis, Review: methylotropic yeasts as factories for the production of foreign proteins. Yeast 11, 1331–1344 (1995)

    Article  Google Scholar 

  • D. Gao, H. Liu, Y. Jiang, J. Lin, Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. Trac- Trend. Anal. Chem. 35, 150–164 (2012)

    Article  Google Scholar 

  • R. Gómez, R. Bashir, A.K. Bhunia, Microscale electronic detection of bacterial metabolism. Sensors Actuators B 86, 198–208 (2002)

    Article  Google Scholar 

  • R. Gorkin, J. Park, J. Siegrist, M. Amasia, B.S. Lee, J.M. Park, J. Kim, H. Kim, M. Madou, Y.K. Cho, Centrifugal microfluidics for biomedical applications. Lab Chip 10(14), 1758–1773 (2010)

    Article  Google Scholar 

  • M. Grumann, A. Geipel, L. Riegger, R. Zengerle, J. Ducrée, Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5, 560–565 (2005)

    Article  Google Scholar 

  • C.W. Huang, G.B. Lee, A microfluidic system for automatic cell culture. J. Micromech. Microeng. 17, 1266–1274 (2007)

    Article  MathSciNet  Google Scholar 

  • M. Huang, S. Fan, W. Xing, C. Liu, Microfluidic cell culture system studies and computational fluid dynamics. Math. Comput. Model. 52(11–12), 2036–2042 (2010)

    Article  Google Scholar 

  • P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89(1), 1–8 (2005)

    Article  Google Scholar 

  • N.K. Inamdar, J.T. Borenstein, Microfluidic cell culture models for tissue engineering. Curr. Opin. Biotechnol. 22(5), 681–689 (2011)

    Article  Google Scholar 

  • N. Kim, C.M. Dempsey, J.V. Zoval, J. Sze, M.J. Madou, Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sensors Actuators B 122, 511–518 (2007)

    Article  Google Scholar 

  • T.J. Kim, S.J. Kim, H.I. Jung, Physical stimulation of mammalian cells using micro-bead impact within a microfluidic environment to enhance growth rate. Microfluid Nanofluid 6, 131–138 (2009)

    Article  Google Scholar 

  • K. Kojima, H. Moriguchi, A. Hattori, T. Kaneko, K. Yasuda, Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching. Lab Chip 3, 292–296 (2003)

    Article  Google Scholar 

  • C.Y. Lee, G.B. Lee, J.L. Lin, F.C. Huang, L.C. Sheng, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J. Micromech. Microeng. 15(6), 1215 (2005)

    Article  Google Scholar 

  • K.F. Lei, M.H. Wu, P.Y. Liao, Y.M. Chen, T.M. Pan, Development of a micro-scale perfusion 3-D cell culture biochip with an incorporated electrical impedance measurement scheme for the quantification of cell number in a 3-D cell culture construct. Microfluid Nanofluid 12, 117–125 (2012)

    Article  Google Scholar 

  • M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, N. Kim, Lab on a CD. Annu. Rev. Biomed. Eng. 8(1), 601–628 (2006)

    Article  Google Scholar 

  • D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153 (2010)

    Article  Google Scholar 

  • N.T. Nguyen, S.T. Wereley, Fundamentals and applications of microfluidics, 2nd edn. (Artech House, Boston, 2006)

    MATH  Google Scholar 

  • J. Nielsen, J. Villadsen, Bioreaction engineering principles (Plenum Press, New York, 1994)

    Google Scholar 

  • M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm, L.G. Griffith, A microfabricated array bioreactor for perfused 3-D liver culture. Biotechnol. Bioeng. 78, 257–269 (2002)

    Article  Google Scholar 

  • Y. Ren, W.W.F. Leung, Numerical and experimental investigation on flow and mixing in batch-mode centrifugal microfluidics. Int. J. Heat Mass Transfer (in press) (2012)

  • G. Roman, Y. Chen, P. Viberg, A. Culbertson, C. Culbertson, Single-cell manipulation and analysis using microfluidic devices. Anal. Bioanal. Chem. 387(1), 9–12 (2007)

    Article  Google Scholar 

  • A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, M.L. Shuler, The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. 20, 338–345 (2004)

    Google Scholar 

  • M. Stangegaard, S. Petronis, A.M. Jørgensen, C.B.V. Christensenc, M. Dufva, A biocompatible micro cell culture chamber (μCCC) for the culturing and on-line monitoring of eukaryote cells. Lab Chip 6, 1045–1051 (2006)

    Article  Google Scholar 

  • A. Takano, M. Tanaka, N. Futai, On-chip CO2 incubation for pocket-sized microfluidic cell culture. Microfluid Nanofluid 12, 907–915 (2012)

    Article  Google Scholar 

  • T. Thorsen, S. Maerkl, S. Quake, Microfluidic large scale integration. Science 298, 580–584 (2002)

    Article  Google Scholar 

  • Y.C. Toh, J. Voldman, Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J. 25(4), 1208–1217 (2011)

    Article  Google Scholar 

  • E. Verpoorte, N.F. De Rooij, Microfluidics meets MEMS. Proc. IEEE 91(6), 930–953 (2003)

    Article  Google Scholar 

  • H.Y. Wang, N. Bao, C. Lu, A microfluidic cell array with individually addressable culture chambers. Biosens. Bioelectron. 24, 613–617 (2008)

    Article  Google Scholar 

  • D.B. Weibel, P.G. Garstecki, G.M. Whitesides, Combining microscience and neurobiology. Curr. Opin. Neurobiol. 15, 560–567 (2005)

    Article  Google Scholar 

  • G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  • M.H. Wu, J.L. Lin, J. Wang, Z. Cui, Z. Cui, Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment. Biomed. Microdevices 11, 265–273 (2009)

    Article  Google Scholar 

  • M.H. Wu, S.B. Huang, G.B. Lee, Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010)

    Article  Google Scholar 

  • C.H. Yeh, P.W. Lin, Y.C. Lin, Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluid Nanofluid 8, 115–121 (2010)

    Article  Google Scholar 

  • J.H. Yeon, J.K. Park, Microfluidic cell culture systems for cellular analysis. Biochip J. 1(1), 17–27 (2007)

    Google Scholar 

  • C. Yi, C.W. Li, S. Ji, M. Yang, Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560, 1–23 (2006)

    Article  Google Scholar 

  • S.K. Yoo, J.H. Lee, S.S. Yun, M.B. Gu, J.H. Lee, Fabrication of a bio-MEMS based cell-chip for toxicity monitoring. Biosens. Bioelectron. 22, 1586–1592 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the Hong Kong Grant Research Council under project no GRF/B-Q15S. Yong Ren also acknowledges the help from Dr Tabris Chung and Ms Kit Ying Choy for demonstration of cell counting and conventional cell culture technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace Woon-Fong Leung.

Appendix-Sensitivity study of grid size, time step and numerical diffusion

Appendix-Sensitivity study of grid size, time step and numerical diffusion

To validate our numerical model (i.e., chamber with r i  = 35 mm, r o  = 53 mm, θ = 15° and H = 0.5 mm), the grid size and time step sensitivity studies were conducted by checking the velocity profiles at t = 3 s when Δt = 5 s and dΩ/dt = ±20.9 rad/s2, as demonstrated in Fig. 13. It shows that the solution can reach convergence when Δt = 0.05 s and Δx = 0.1 mm. The dependence of numerical diffusion on the order of computational discretization scheme (i.e., backward Euler scheme) and grid size at t = 1 and 2 s respectively when Δt = 5 s and dΩ/dt = ±20.9 rad/s2 was investigated in Fig. 14, which demonstrates qualitatively that the numerical diffusion can be minimized using the 2nd order scheme and grid size of 0.1 mm. The same conclusion can be drawn from the quantitative results in Fig. 15, wherein the species concentration distribution profile versus radial position r (z = 0.25 mm, ϕ = 3.75°, see the white dash curve in Fig. 14,) is demonstrated and the curve with the steepest slope represents the condition with minimized numerical diffusion. In the meanwhile, the results are compared with the benchmarking condition when the physical diffusion is disabled (Diffusion coefficient, D = 0 mm2/s). It shows some variance (i.e., reduced diffusion layer thickness) from the optimal case when the 2nd order scheme, grid size of 0.1 mm and D = 0.015 mm2/s were used, indicating the mixing effect in this scenario is completely attributed to the numerical diffusion.

Fig. 13
figure 13

Time step and grid size validation for circumferential velocity over radial position r (z = 0.25 mm, ϕ = 0) at t = 3 s when Δt = 5 s and dΩ/dt = ±20.9 rad/s2

Fig. 14
figure 14

Order of computational discretization scheme and grid size effects to numerical diffusion at t = 1 and 2 s respectively when Δt = 5 s and dΩ/dt = ±20.9 rad/s2

Fig. 15
figure 15

Order of computational discretization scheme and grid size effects to concentration distribution profile over radial position r (z = 0.25 mm, ϕ = 3.75°, see the white dash curve in Fig. A.2) at t = 1 and 2 s respectively when Δt = 5 s and dΩ/dt = ±20.9 rad/s2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Chow, L.MC. & Leung, W.WF. Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris . Biomed Microdevices 15, 321–337 (2013). https://doi.org/10.1007/s10544-012-9735-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9735-7

Keywords

Navigation