Skip to main content
Log in

Print-to-print: a facile multi-object micro-patterning technique

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In recent years, micropatterning techniques have gained increasing popularity from a broad range of engineering and biology communities for the promise to establish highly quantitative investigations on miniature biological objects (e.g., cells and bacteria) with spatially defined microenvironments. However, majority of the existing techniques rely on cleanroom-based microfabrication and cannot be easily extended to a regular biological laboratory. In this paper, we present a simple versatile printing-based method, referred to as Print-to-Print (P2P), to form multi-object micropatterns for potential biological applications, along with our recent efforts to deliver out-of-cleanroom microfabrication solutions to the general public (Zhao et al. 2009), (Xing et al. 2011), (Wang et al. 2009), (Pan and Wang 2011), (Zhao et al. 2011). The P2P method employs only a commercially available solid-phase printer and custom-made superhydrophobic films. The entire patterning process does not involve any thermal or chemical treatment. Moreover, the non-contact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. Using the P2P process, a minimal feature resolution of 229 ± 17 μm has been successfully demonstrated. In addition, this approach has been applied to form biological micropatterning on various substrates as well as multi-object co-patterns on the commonly used surfaces. Finally, the reusability of superhydrophobic substrates has also been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • S. Zhao, H. Cong, T. Pan, Lab Chip 9, 1128–1132 (2009)

    Article  Google Scholar 

  • S. Xing, R.S. Harake, T. Pan, Lab Chip 11, 3642–3648 (2011)

    Article  Google Scholar 

  • W. Wang, S. Zhao, T. Pan, Lab Chip 9, 1133–1137 (2009)

    Article  Google Scholar 

  • T. Pan, W. Wang, Ann. Biomed. Eng. 39, 600–620 (2011)

    Article  Google Scholar 

  • S. Zhao, A. Chen, A. Revzin, T. Pan, Lab Chip 11, 224–230 (2011)

    Article  Google Scholar 

  • S.H. Lee, J.J. Moon, J.L. West, Biomaterials 29, 2962–2968 (2008)

    Article  Google Scholar 

  • E. Gottwald, S. Giselbrecht, C. Augspurger, B. Lahni, N. Dambrowsky, R. Truckenmuller, V. Piotter, T. Gietzelt, O. Wendt, W. Pfleging, A. Welle, A. Rolletschek, A.M. Wobus, K.F. Weibezahn, Lab Chip 7, 777–785 (2007)

    Article  Google Scholar 

  • A. Khademhosseini, L. Ferreira, J. Blumling, J. Yeh, J.M. Karp, J. Fukuda, R. Langer, Biomaterials 27, 5968–5977 (2006)

    Article  Google Scholar 

  • B. Dykstra, J. Ramunas, D. Kent, L. McCaffrey, E. Szumsky, L. Kelly, K. Farn, A. Blaylock, C. Eaves, E. Jervis, Proc. Natl. Acad. Sci. U.S.A. 103, 8185–8190 (2006)

    Article  Google Scholar 

  • R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Dev. Cell 6, 483–495 (2004)

    Article  Google Scholar 

  • Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin, Electrophoresis 30, 1497–1500 (2009)

    Article  Google Scholar 

  • E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 7091–7095 (2009)

    Article  Google Scholar 

  • E.E. Hui, S.N. Bhatia, Proc. Natl. Acad. Sci. U.S.A. 104, 5722–5726 (2007)

    Article  Google Scholar 

  • H. Zhu, G. Stybayeva, M. Macal, E. Ramanculov, M.D. George, S. Dandekar, A. Revzin, Lab Chip 8, 2197–2205 (2008)

    Article  Google Scholar 

  • M.P. Lutolf, R. Doyonnas, K. Havenstrite, K. Koleckar, H.M. Blau, Integr. Biol. (Camb) 1, 59–69 (2009)

    Article  Google Scholar 

  • D.M. Pirone, C.S. Chen, J. Mammary Gland Biol. Neoplasia 9, 405–417 (2004)

    Article  Google Scholar 

  • B.D. Martin, B.P. Gaber, C.H. Patterson, D.C. Turner, Langmuir 14, 3971–3975 (1998)

    Article  Google Scholar 

  • S.C. Lin, F.G. Tseng, H.M. Huang, Y.-F. Chen, Y.C. Tsai, C.E. Ho, C.C. Chieng, Sensors and Actuators B: Chem. 99, 174–185 (2004)

    Article  Google Scholar 

  • L. Libioulle, A. Bietsch, H. Schmid, B. Michel, E. Delamarche, Langmuir 15, 300–304 (1998)

    Article  Google Scholar 

  • E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Science 276, 779–781 (1997)

    Article  Google Scholar 

  • E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, H. Biebuyck, J. Am. Chem. Soc. 120, 500–508 (1998)

    Article  Google Scholar 

  • S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 96, 5545–5548 (1999)

    Article  Google Scholar 

  • I. Barbulovic-Nad, M. Lucente, Y. Sun, M. Zhang, A.R. Wheeler, M. Bussmann, Crit. Rev. Biotechnol. 26, 237–259 (2006)

    Article  Google Scholar 

  • L. Hong, T. Pan, Microfluidics. Nanofluidics. 10, 991–997 (2011)

    Article  Google Scholar 

  • L. Hong, T. Pan, Lab Chip 10, 3271–3276 (2010)

    Article  Google Scholar 

  • L. Hong, T. Pan, J. Microelectromech, S. 19, 246–253 (2010)

    Google Scholar 

  • B. Nie, S. Xing, J.D. Brandt, T. Pan, Lab Chip 12, 1110–1118 (2012)

    Article  Google Scholar 

  • J.B. Segur, H.E. Oberstar, Ind. Eng. Chem. 43, 2117–2120 (1951)

    Article  Google Scholar 

  • CR. Handbook of Chmeistry and Physics, 92nd edn, edited by W.M. Haynes (CR. Press: Boca Raton, FL, 2009).

  • Y. Ding, L. Hong, B. Nie, K.S. Lam, T. Pan, Lab Chip 11, 1464–1469 (2011)

    Article  Google Scholar 

  • H. Cong, A. Revzin, T. Pan, Nanotechnology 20, 075307 (2009)

    Article  Google Scholar 

  • P. G. Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer, 2004.

  • T.-Y. Chen, J.A. Tsamopoulos, R.J. Good, J. Colloid Interface Sci. 151, 49–69 (1992)

    Article  Google Scholar 

  • L. Vagharchakian, F. Restagno, L. Léger, J. Phys. Chem. B 113, 3769–3775 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is in part supported by the National Science Foundation CAREER Program (ECCS-0846502). The authors would like to thank Yuzhe Ding for valuable discussion on capillary printing and Arnold Chen’s help for taking pictures. SX would like to acknowledge the financial support from China Scholarship Council (CSC) and Center for Information Technology Research in the Interest of Society (CITRIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingrui Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, S., Zhao, S. & Pan, T. Print-to-print: a facile multi-object micro-patterning technique. Biomed Microdevices 15, 233–240 (2013). https://doi.org/10.1007/s10544-012-9723-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9723-y

Keywords

Navigation