Skip to main content
Log in

Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Slow oscillations in the hippocampus are correlated with memory consolidation and brain diseases. The characteristic firings of the hippocampal network in vitro are still poorly understood. Here, spontaneous oscillations (~0.004 Hz) were found in high-density hippocampal networks by multi-electrode arrays after 30 days in vitro. This kind of spontaneous activity was characterized by periodic synchronized superbursts, which persisted for approximately 60 s at long intervals. Additionally, 1-Hz stimulation (duration <120 s) could regulate these network-wide oscillatory activities by triggering the next synchronized superbursts prematurely. The results demonstrated that the slow oscillatory activities in hippocampal cultures could be regulated by external stimulation, which indicates that multi-electrode arrays provide a well-suited platform for studying the dynamics of slow oscillations in vitro and may help to elucidate the mechanism of electrical stimulation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • K.C. Cheung, Biomedical microdevices 9, 923 (2007)

    Article  Google Scholar 

  • A. Destexhe, S.W. Hughes, M. Rudolph, V. Crunelli, Trends Neurosci 30, 334 (2007)

    Article  Google Scholar 

  • G.W. Gross, A.N. Williams, J.H. Lucas, J Neurosci Methods 5, 13 (1982)

    Article  Google Scholar 

  • Y. Jimbo, A. Kawana, P. Parodi, V. Torre, Biol Cybern 83, 1 (2000)

    Article  Google Scholar 

  • F. Lante, M.C. de Jesus Ferreira, J. Guiramand, M. Recasens, M. Vignes, Hippocampus 16, 345 (2006)

    Article  Google Scholar 

  • A.K. Lee, M.A. Wilson, Neuron 36, 1183 (2002)

    Article  Google Scholar 

  • X. Leinekugel, R. Khazipov, R. Cannon, H. Hirase, Y. Ben-Ari, G. Buzsaki, Science 296, 2049 (2002)

    Article  Google Scholar 

  • X. Li, W. Zhou, M. Liu, Q. Luo, Conf Proc IEEE Eng Med Biol Soc 2, 2134 (2005)

    Google Scholar 

  • X. Li, W. Zhou, M. Liu, S. Zeng, Q. Luo, Prog Nat Sci 16, 1337 (2006)

    Article  Google Scholar 

  • Y. Li, W. Zhou, X. Li, S. Zeng, M. Liu, Q. Luo, Biosens. Bioelectron. (2007a)

  • X. Li, W. Zhou, S. Zeng, M. Liu, Q. Luo, Biosens Bioelectron 22, 1538 (2007b)

    Article  Google Scholar 

  • E. Maeda, H.P. Robinson, A. Kawana, J Neurosci 15, 6834 (1995)

    Google Scholar 

  • L. Marshall, H. Helgadottir, M. Molle, J. Born, Nature 444, 610 (2006)

    Article  Google Scholar 

  • K.W. Meacham, R.J. Giuly, L. Guo, S. Hochman, S.P. DeWeerth, Biomedical microdevices 10, 259 (2008)

    Article  Google Scholar 

  • M. Penttonen, N. Nurminen, R. Miettinen, J. Sirvio, D.A. Henze, J. Csicsvari, G. Buzsaki, Neuroscience 94, 735 (1999)

    Article  Google Scholar 

  • J. Pine, J Neurosci Methods 2, 19 (1980)

    Article  Google Scholar 

  • H.P. Robinson, M. Kawahara, Y. Jimbo, K. Torimitsu, Y. Kuroda, A. Kawana, J Neurophysiol 70, 1606 (1993)

    Google Scholar 

  • P.A. Salin, M. Scanziani, R.C. Malenka, R.A. Nicoll, Proc Natl Acad Sci U S A 93, 13304 (1996)

    Article  Google Scholar 

  • G. Shahaf, S. Marom, J Neurosci 21, 8782 (2001)

    Google Scholar 

  • A. Sirota, G. Buzsaki, Thalamus Relat Syst 3, 245 (2005)

    Article  Google Scholar 

  • M. Steriade, A. Nunez, F. Amzica, J Neurosci 13, 3252 (1993)

    Google Scholar 

  • I. Vajda, J. van Pelt, P. Wolters, M. Chiappalone, S. Martinoia, E. van Someren, A. van Ooyen, Biophys J 94, 5028 (2008)

    Article  Google Scholar 

  • J. Van Pelt, M.A. Corner, P.S. Wolters, W.L. Rutten, G.J. Ramakers, Neurosci Lett 361, 86 (2004)

    Article  Google Scholar 

  • J. Van Pelt, I. Vajda, P.S. Wolters, M.A. Corner, G.J. Ramakers, Prog Brain Res 147, 173 (2005)

    Google Scholar 

  • D.A. Wagenaar, J. Pine, S.M. Potter, J Neurosci Methods 138, 27 (2004)

    Article  Google Scholar 

  • D.A. Wagenaar, Z. Nadasdy, S.M. Potter, Phys Rev E 73, 051907 (2006)

    Article  MathSciNet  Google Scholar 

  • T. Wolansky, E.A. Clement, S.R. Peters, M.A. Palczak, C.T. Dickson, J Neurosci 26, 6213 (2006)

    Article  Google Scholar 

  • D.C. Wu, Z.H. Xu, S. Wang, Q. Fang, D.Q. Hu, Q. Li, H.L. Sun, S.H. Zhang, Z. Chen, Neurobiol Dis 31, 74 (2008)

    Article  Google Scholar 

  • W. Zhou, X. Li, M. Liu, Y. Zhao, G. Zhu, Q. Luo, Biosystems. (2008)

  • L. Zhu, K.L. Blethyn, D.W. Cope, V. Tsomaia, V. Crunelli, S.W. Hughes, Neuroscience 141, 621 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 30727002, 30800314) and the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070487058). The authors thank Wei Zhou and Hui Gong for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Luo.

Additional information

Geng Zhu and Xiangning Li contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Li, X., Pu, J. et al. Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays. Biomed Microdevices 12, 153–158 (2010). https://doi.org/10.1007/s10544-009-9370-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9370-0

Keywords

Navigation