Skip to main content
Log in

Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-μm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor–liquid–solid method. The microtubes had inner diameters of 1.9–6.4 µm and a length of 25 µm. Impedances ranged from 220 kΩ to 1.55 MΩ, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • R. Biran, D.C. Martin, P.A. Tresco, Exp. Neurol. 195, 115 (2005)

    Article  Google Scholar 

  • P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, R.A. Normann, IEEE Trans. Biomed. Eng. 38, 758 (1991)

    Article  Google Scholar 

  • K.C. Cheung, Biomed Microdevices 9, 923 (2007)

    Article  Google Scholar 

  • D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, IEEE Trans. Biomed. Eng. 39, 635 (1992)

    Article  Google Scholar 

  • N.A. Fitzsimmons, W. Drake, T.L. Hanson, M.A. Lebedev, M.A.L. Nicolelis, J. Neurosci. 27, 5593 (2007)

    Article  Google Scholar 

  • L.A. Geddes, R. Roeder, Ann. Biomed. Eng. 31, 879 (2003)

    Article  Google Scholar 

  • L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Nature 442, 164 (2006)

    Article  Google Scholar 

  • Y. Kato, H. Takao, K. Sawada, M. Ishida, Jpn. J. Appl. Phys. 43, 6848 (2004)

    Article  Google Scholar 

  • Y. Kato, H. Takao, K. Sawada, M. Ishida, Jpn. J. Appl. Phys. 45, L108 (2006)

    Article  Google Scholar 

  • T. Kawano, Y. Kato, R. Tani, H. Takao, K. Sawada, M. Ishida, IEEE Trans. Electron Devices 51, 415 (2004)

    Article  Google Scholar 

  • S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann, F. Solzbacher, Biomed. Microdevices 11, 453 (2009)

    Article  Google Scholar 

  • S. Lee, K. Limkrailassiri, Y. Gao, C. Chang, L. Lin, proc. int. conf. microelectromechanical systems (MEMS 2007), p. 61 (2007)

  • K.A. Ludwig, R.M. Miriani, N.B. Langhals, M.D. Joseph, D.J. Anderson, D.R. Kipke, J. Neurophysiol. 101, 1679 (2009)

    Article  Google Scholar 

  • K. Mayumi, K. Takei, T. Kawashima, T. Kawano, H. Takao, K. Sawada, M. Ishida, Proc. Asia-Pacific Conerence of Transducers and Micro-Nano Technology (APCOT 2008), p.113 (2008).

  • W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Nano Lett. 8, 3004 (2008)

    Article  Google Scholar 

  • V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148, 1 (2005)

    Article  Google Scholar 

  • D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain, Brain Res. 983, 23 (2003)

    Article  Google Scholar 

  • K. Takei, T. Kawashima, K. Sawada, M. Ishida, IEEE Sens. J. 8, 470 (2008a)

    Article  Google Scholar 

  • K. Takei, T. Kawashima, T. Kawano, K. Sawada, M. Ishida, J. Micromech. Microeng. 18, 035033 (2008b)

    Article  Google Scholar 

  • K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, Biomed. Microdevices 11, 539 (2009)

    Article  Google Scholar 

  • R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  Google Scholar 

  • K.D. Wise, J.B. Angell, A. Starr, IEEE Trans. Biomed. Eng. BME-17, 238 (1970)

    Article  Google Scholar 

  • K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, K. Najafi, Proc. IEEE 92, 76 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. M. Ashiki at Toyohashi University of Technology for his assistance with the fabrication process. This work was supported by a grant from the Global COE Program “Frontiers of Intelligent Sensing,” a Grant-in-Aid for Scientific Research S (MI), a JSPS fellowship (KT), a CREST project of the Japan Science and Technology Agency (JST) (MI), a grant from the National Institute of Advanced Industrial Science and Technology (HK), and a Strategic Research Program for Brain Sciences (SRPBS) (TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniharu Takei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takei, K., Kawano, T., Kawashima, T. et al. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Biomed Microdevices 12, 41–48 (2010). https://doi.org/10.1007/s10544-009-9356-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9356-y

Keywords

Navigation