Skip to main content
Log in

Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The key issues in the development of a microneedle patch as a tool for transdermal drug delivery are safety and delivery performance in addition to economical production. In this paper, novel fabrication methods for an inexpensive microneedle patch made of biocompatible polymer are reported, along with functional verifications for the fabricated microneedle patch through animal models. We combined the merits of in-line microneedles, i.e., easy and economical production, with the superior performance of two-dimensionally arrayed microneedles. One-dimensionally fabricated microneedles were assembled to make two-dimensionally arrayed patches to attain our goal. First, we fabricated strips with one-dimensionally arrayed microneedles through deep X-ray lithography on polymethylmethacrylate or another negative photoresist, SU-8, with sharply reduced exposure time. Second, we assembled microneedle strips to make two-dimensionally arrayed microneedles, which we utilized further for fabrication of molding masters. Finally, we prepared microneedle patches made of polycarbonate by hot embossing with these masters. We then demonstrated the actual delivery of exogenous materials through application on skin via animal experiments, and we found no detectable side effects such as inflammation or allergic reactions at the site of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • C.A. Akdis, M. Akdis, A. Trautmann, K. Blaser, Current Opin. Immunol. 12, 641–646 (2000)

    Article  Google Scholar 

  • E.W. Becker, W. Ehrfeld, P. Hagmann, Microelectron. Eng. 4, 35–56 (1986)

    Article  Google Scholar 

  • J.H. Braybrook, Biocompatiblility: Assessment of medical devices and materials, Wiley, New York, (1997)

    Google Scholar 

  • M.B. Brown, G.P. Martin, S.A. Jones, F.K. Akomeah, Drug Deliv. 13, 175–187 (2006)

    Article  Google Scholar 

  • G. Cevc, Adv. Drug Deliver. Rev. 56, 675–711 (2004)

    Article  Google Scholar 

  • M. Cormier, B. Johnson, M. Ameri, K. Nyam, L. Libiran, D.D. Zhang, P. Daddona, J. Control. Release 97, 503–511 (2004)

    Google Scholar 

  • P.G. Coulie, P. van der Bruggen, Curr. Opin. Immunol. 15, 131–137 (2003)

    Article  Google Scholar 

  • C. Cremers, F. Bouamrane, L. Singleton, R. Schenk, Microsyst. Technol. 7, 11–16 (2001)

    Article  Google Scholar 

  • S.E. Cross, M.S. Roberts, Curr. Drug Deliv. 1, 81–92 (2004)

    Article  Google Scholar 

  • S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, J. Biochem. 37, 1155–1163 (2004)

    Google Scholar 

  • K. Dell, R. Koesters, L. Gissmann, Int. J. Cancer 118, 364–372 (2006)

    Article  Google Scholar 

  • A.R. Denet, R. Vanbever, V. Préat, Adv. Drug Deliver. Rev. 56, 659–674 (2004)

    Article  Google Scholar 

  • A.G. Doukas, N. Kollias, Adv. Drug Deliver. Rev. 56, 559–579 (2004)

    Article  Google Scholar 

  • H.S. Gill, M.R. Prausnitz, J. Control, Release 117, 227–237 (2007)

    Article  Google Scholar 

  • M. Han, D.H. Hyun, H.H. Park, S.S. Lee, C.H. Kim, C.G. Kim, J. Micromech. Microeng. 17, 1184–1191 (2007)

    Article  Google Scholar 

  • E. Harlow, D. Lane, Antibodies: A laboratory manual, 2nd edn. (Cold Spring Harbor Laboratory, New York, 1988)

    Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87, 922–925 (1998a)

    Article  Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, in Proc. IEEE Conf. MEMS, pp. 494–498 (1998b)

  • L. Jian, Y.M. Desta, J. Goettert, M. Bednarzik, B. Loechel, J. Yoonyoung, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, R. Degen, in Proc. SPIE 4979, 394–401 (2003)

  • Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Adv. Drug. Deliver. Rev. 56, 619–658 (2004)

    Article  Google Scholar 

  • K. Kang, M. Kubin, K.D. Cooper, S.R. Lessin, G. Trinchieri, A.H. Rook, J. Immunol. 156, 1402–1407 (1996)

    Google Scholar 

  • Y.C. Kim, S.S. Lee, J. Micromech. Microeng. 18, 015006–015012 (2008)

    Article  Google Scholar 

  • W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Pharm. Res. 21, 947–952 (2004)

    Article  Google Scholar 

  • D.V. McAllister, M.G. Allen, M.R. Prausnitz, Annu. Rev. Biomed. Eng. 2, 289–313 (2000)

    Article  Google Scholar 

  • D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Pro. Natl. Acad. Sci. USA 100, 13755–13760 (2003)

    Article  Google Scholar 

  • S.J. Moon, S.S. Lee, J. Micromech. Microeng. 15, 903–911 (2005)

    Article  Google Scholar 

  • S.J. Moon, C.Y. Jin, S.S. Lee, J. Phys.: Conference Series 34, 180–186 (2006)

    Article  Google Scholar 

  • J.H. Park, S. Davis, Y.K. Yoon, M.R. Prausnitz, M.G. Allen, in Proc. IEEE Conf. MEMS, pp. 371–374 (2003)

  • J.H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release 104, 51–66 (2005)

    Article  Google Scholar 

  • L.A. Pinto, J. Edwards, P.E. Castle, C.D. Harro, D.R. Lowy, J.T. Schiller, D. Wallace, W. Kopp, J.W. Adelsberger, M.W. Baseler, J.A. Berzofsky, A. Hildesheim, J. Exp. Med. 188, 327–338 (2003)

    Google Scholar 

  • S.A. Plotkin, Nat. Med. Suppl. 11, S5–S11 (2005)

    Article  Google Scholar 

  • M.R. Prausnitz, S. Mitragotri, R. Langer, Nat. Rev. Drug Discov. 3, 115–124 (2004)

    Article  Google Scholar 

  • I. Roitt, J. Brostoff, D. Male, Immunology, 6th edn. (Harcourt, London, 2001)

    Google Scholar 

  • N. Romani, S. Koide, M. Crowley, M. Witmer-Pack, A.M. Livingstone, C.G. Fathman, K. Inaba, R.M. Steinman, J. Exp. Med. 169, 1169–1178 (1989)

    Article  Google Scholar 

  • N. Romani, S. Holzmann, C.H. Tripp, F. Koch, P. Stoitzner, APMIS 111, 725–740 (2003)

    Article  Google Scholar 

  • W.R. Runyan, K.E. Bean, Semiconductor integrated circuit processing technology, Addison-Wesley, New York (1990)

    Google Scholar 

  • S. Sugiyama, S. Khumpuang, G. Kawaguchi, J. Micromech. Microeng. 14, 1399–1404 (2004)

    Article  Google Scholar 

  • E. Touitou, Expert Opin. Biol. Th. 2, 723–733 (2002)

    Article  Google Scholar 

  • A. Trautmann, F. Heuck, C. Mueller, P. Ruther, O. Paul, in Proc. Transducers, pp. 1420–1423, (2005)

  • T.L. Whiteside, R.B. Herberman, Curr. Biol. 7, 704–710 (1995)

    Google Scholar 

  • G. Widera, J. Johnson, L. Kim, L. Libiran, K. Nyam, P.E. Daddona, M. Cornier, Vaccine 24, 1653–1664 (2006)

    Article  Google Scholar 

  • A.C. Williams, B.W. Barry, Adv. Drug Deliver. Rev. 56, 603–618 (2004)

    Article  Google Scholar 

  • D.L. Woodland, Curr. Opin. Immunol. 15, 430–435 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of 9C1 Deep Etch X-ray Lithography/White BeamLine, Pohang Light Source (PLS), Korea, and Korea Research Institute of Bioscience & Biotechnology (KRIBB) for their assistance with the fabrication process for microneedle patches and with the transdermal drug delivery experiment, respectively. This work was supported by the IT R&D program of MKE/IITA, Republic of Korea [2008-S-001-01, Ubiquitous Health Monitoring Module and System Development], and by the Center for Ultramicrochemical Process Systems sponsored by Korea Science and Engineering Foundation (KOSEF), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo Han Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C.Y., Han, M.H., Lee, S.S. et al. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed Microdevices 11, 1195–1203 (2009). https://doi.org/10.1007/s10544-009-9337-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9337-1

Keywords

Navigation