Skip to main content
Log in

Orthogonality constrained gradient reconstruction for superconvergent linear functionals

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The post-processing of the solution of variational problems discretized with Galerkin finite element methods is particularly useful for the computation of quantities of interest. Such quantities are generally expressed as linear functionals of the solution and the error of their approximation is bounded by the error of the solution itself. Several a posteriori recovery procedures have been developed over the years to improve the accuracy of post-processed results. Nonetheless such recovery methods usually deteriorate the convergence properties of linear functionals of the solution and, as a consequence, of the quantities of interest as well. The paper develops an enhanced gradient recovery scheme able to both preserve the good qualities of the recovered gradient and increase the accuracy and the convergence rates of linear functionals of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Babuska, I.: Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36(2), 331–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Oden, J.T.: A unified approach to a posteriori error estimation using element residual methods. Numerische Mathematik 65(1), 23–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, New York (2011)

    MATH  Google Scholar 

  5. Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Methods Eng. 89(13), 1605–1634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bank, R., Xu, J., Zheng, B.: Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids. SIAM J. Numer. Anal. 45(5), 2032–2046 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, J.: Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10(2), 243–251 (1976)

    Article  MATH  Google Scholar 

  8. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blacker, T., Belytschko, T.: Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int. J. Numer. Methods Eng. 37(3), 517–536 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  11. Bürg, M., Nazarov, M.: Goal-oriented adaptive finite element methods for elliptic problems revisited. J. Comput. Appl. Math. 287, 125–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, T., Kelly, D.: Pointwise and local error estimates for the quantities of interest in two-dimensional elasticity. Comput. Math. Appl. 46(1), 69–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cirak, F., Ramm, E.: A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput. Methods Appl. Mech. Eng. 156(1–4), 351–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frolov, M., Chistiakova, O.: A new functional a posteriori error estimate for problems of bending of timoshenko beams. Lobachevskii J. Math. 37(5), 534–540 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giles, M.B., Süli, E.: Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. González-Estrada, O.A., Nadal, E., Ródenas, J., Kerfriden, P., Bordas, S.P.A., Fuenmayor, F.: Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput. Mech. 53(5), 957–976 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Granzow, B.N., Shephard, M.S., Oberai, A.A.: Output-based error estimation and mesh adaptation for variational multiscale methods. Comput. Methods Appl. Mech. Eng. 322, 441–459 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grätsch, T., Bathe, K.J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83(4), 235–265 (2005)

    Article  MathSciNet  Google Scholar 

  19. Hartmann, R., Houston, P.: Adaptive discontinuous galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183(2), 508–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartmann, R.: Houston P Symmetric interior penalty dg methods for the compressible navier-stokes equations i: method formulation. Int. J. Numer. Anal. Model. 3, 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Heintz, P., Larsson, F., Hansbo, P., Runesson, K.: Adaptive strategies and error control for computing material forces in fracture mechanics. Int. J. Numer. Methods Eng. 60(7), 1287–1299 (2004)

    Article  MATH  Google Scholar 

  22. Korotov, S., Neittaanmäki, P., Repin, S.: A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery. J. Numer. Math. JNMA 11(1), 33–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Křížek, M., Neittaanmäki, P.: On superconvergence techniques. Acta Appl. Math. 9(3), 175–198 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nadal E, De Almeida JPM, R denas JJ, Fuenmayor FJ, Gonz lez Estrada OA (2013) Application of a fully equilibrated superconvergent patch recovery scheme for error bounding. In: Proceedings of the 6th International Conference on Adaptive Modeling and Simulation Adaptive Modeling and Simulation 2013, ADMOS 2013, pp. 503–514

  25. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182(2), 496–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oden, J.T.: Vemaganti KS Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms. J. Comput. Phys. 164(1), 22–47 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oden, J.T., Prudhomme, S., Demkowicz, L.: A posteriori error estimation for acoustic wave propagation problems. Arch. Comput. Methods Eng. 12(4), 343–389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from pde approximations. SIAM Rev. 42(2), 247–264 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pierce, N.A., Giles, M.B.: Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 200(2), 769–794 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quarteroni, A.: Numerical Models for Differential Problems, vol. 2. Springer, Berlin (2010)

    MATH  Google Scholar 

  32. Rannacher, R., Stuttmeier, F.T.: A feed-back approach to error control in finite element methods: application to linear elasticity. Comput. Mech. 19, 434–446 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rannacher, R.: A posteriori error estimation in least-squares stabilized finite element schemes. Comput. Methods Appl. Mech. Eng. 166(1–2), 99–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rannacher, R.: Error control in finite element computations. In: Error control and adaptivity in scientific computing, Springer, pp. 247–278 (1999)

  35. Rannacher, R., Suttmeier, F.T.: A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 176(1–4), 333–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Open Math. 7(3), 506–519 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Ródenas, J., Tur, M., Fuenmayor, F., Vercher, A.: Improvement of the superconvergent patch recovery technique by the use of constraint equations: the spr-c technique. Int. J. Numer. Methods Eng. 70(6), 705–727 (2007)

    Article  MATH  Google Scholar 

  38. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Venditti, D.A., Darmofal, D.L.: Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. J. Comput. Phys. 164(1), 204–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  41. Wiberg, N.E., Abdulwahab, F.: Patch recovery based on superconvergent derivatives and equilibrium. Int. J. Numer. Methods Eng. 36(16), 2703–2724 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wiberg, N.E., Abdulwahab, F., Ziukas, S.: Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int. J. Numer. Methods Eng. 37(20), 3417–3440 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xuan, Z., Yang, D., Peng, J.: An efficient method for computing local quantities of interest in elasticity based on finite element error estimation. Arch. Appl. Mech. 78(7), 517–529 (2008)

    Article  MATH  Google Scholar 

  44. Zhang, Z.: Ultraconvergence of the patch recovery technique ii. Math. Comput. Am. Math. Soc. 69(229), 141–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Z., Victory Jr., H.D.: Mathematical analysis of zienkiewicz-zhu’s derivative patch recovery technique. Numer. Methods Partial Differ. Equ. 12(4), 507–524 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, Q., Zhao, Q.: Spr technique and finite element correction. Numerische Mathematik 96(1), 185–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  MATH  Google Scholar 

  49. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.: The Finite Element Method, vol. 3. McGraw-hill, London (1977)

    Google Scholar 

  50. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Elsevier, Incorporated (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio M. Chiaramonte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Problem data for the numerical tests

In Tables 6 we summarize the problem data for the test cases of Sect. 5.

Table 6 Problem parameters for the monodimensional (1D), bidimensional (2D) and tridimensional (3D) test cases

1.2 Implementation of the SPR method

In Sect. 3 we have introduced the reconstructed gradient which is built on the Lagrangian tensorial basis functions \(\{\varPsi _l\}_{l=1}^{L}\) having maximum degree identical to the one used for the approximated solution with nodal values \(\{\zeta _l\}_{l=1}^{L}\):

(A.1)

The integer number L corresponds to the total number of degrees of freedom and is equal to \(L=d \cdot C \cdot K\) where d is the dimension of the space, C represents the number of components of the unknown of the problem and K is the number of support points.

As illustrated in Fig. 1, to each support point it is associated at least one patch of cells \({\mathscr {P}}_k\) made of \(2^d\) cells, such that . For each support point there are \(d\cdot C\) components of to reconstruct. Each m-th component of the reconstructed gradient, with \(m \in \{1,\ldots ,d\cdot C\}\), is then approximated in a least squares sense by a complete polynomial centered in of maximum degree p coincident with the degree used for the basis functions \(\{\varPsi _l\}_{l=1}^{L}\). Hence the polynomial approximation on the patch \({\mathscr {P}}_k\) writes:

where \(\mathrm{i}_k\) is an interval of \(d\cdot C\) indices related to the index k, that is \(\mathrm{i}_k :=\{d\cdot C\cdot (k-1)+1, \ldots , d\cdot C\cdot k\}\), represents the vector of the unknown coefficients and is the vector containing the polynomial basis functions. Then the nodal value \(\zeta _l\) is set equal to the evaluation of the polynomial approximant at the recovery point:

(A.2)

The integer number B coincides with the number of Barlow points belonging to the current Patch \({\mathscr {P}}_k\), computed as:

$$\begin{aligned} B = \frac{\prod _{i=1}^{d}(p+i)}{d!}. \end{aligned}$$

For any component the coefficients vector is computed fitting the values of the gradient at the B Barlow points inside the patch \({\mathscr {P}}_k\) associated to , by resolution of a discrete least squares problem, which writes:

(A.3)

where \(m = (l-1) \, \text {mod} \, (d\cdot C) + 1\). The operators \(\text {div}\) and \(\text {mod}\) represent respectively the integer division and the modulo operation.

The stationary point can be found by differentiation with respect to the minimization parameter . Setting the first-order derivative equal to zero we get the following linear algebraic system:

(A.4)

where the index k is related to the index l by the identity \(k = (l-1) \, \text {div} \, (d\cdot C) + 1\) and the matrix \(M_k\) and the right hand side are defined as:

(A.5)

Hence for each support point we solve \(d\cdot C\) small linear problems (A.4) and we compute each nodal value \(\zeta _l\) according to (A.2).

1.3 Implementation of the \(\hbox {SPR}^+\) method

The constrained least squares problem that we want to solve has been discussed in Sect. 4 and derives from the SPR problem (A.6). We firstly rewrite the a-orthogonality condition as:

where and , as defined in Sect. 2. For any support point and its associated patch \({\mathscr {P}}_k\), saying that we want to reconstruct the m-th component , the constrained discrete least squares problem writes:

(A.6)

where are the Barlow points belonging to the patch \({\mathscr {P}}_k\). We adopt the Lagrange multiplier method, then let us define the multiplier and the objective function of the problem as:

(A.7)

We recall that are the Barlow points belonging to the patch \({\mathscr {P}}_k\) associated to the recovery point and the index k is related to the index l according to the rule \(k = (l-1) \, \text {div}\, (C\cdot d) + 1\). The index \(m \in \{1, \ldots , d\cdot C\}\) refers to the component of the gradient that we want to reconstruct and is given by \(m = (l-1) \, \text {mod} \, (d\cdot C) + 1\).

The stationary point can be found by imposing the first order derivatives to be equal to zero. Differentiation by the coefficients vector leads to:

(A.8)

where the matrix \(M_k\) and the vector have already been defined in (A.5). Then we have:

On the other hand differentiation by the Lagrange multiplier \(\lambda \) leads to the recovery of the constraint equation of problem (A.6), which writes:

Substituting the explicit expression for provided by result (A.8), we finally get the following solution for the Lagrange multiplier:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcù, R., Chiaramonte, M.M. Orthogonality constrained gradient reconstruction for superconvergent linear functionals. Bit Numer Math 60, 465–479 (2020). https://doi.org/10.1007/s10543-019-00775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00775-2

Keywords

Mathematics Subject Classification

Navigation