Skip to main content
Log in

Linear gradient structures and discrete gradient methods for conservative/dissipative differential-algebraic equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the use of discrete gradients is considered for differential-algebraic equations (DAEs) with a conservation/dissipation law. As one of the most popular numerical methods for conservative/dissipative ordinary differential equations, the framework of the discrete gradient method has been intensively developed over recent decades. Although discrete gradients have been applied to several specific DAEs, no unified framework has yet been constructed. In this paper, the author moves toward the establishment of such a framework, and introduces concepts including an appropriate linear gradient structure for DAEs. Then, it is revealed that the simple use of discrete gradients does not imply the discrete conservation/dissipation laws. Fortunately, however, for the case of index-1 DAEs, an appropriate reformulation and a new discrete gradient enable us to successfully construct a novel scheme, which satisfies both of the discrete conservation/dissipation law and the constraint. This first attempt may provide an indispensable basis for constructing a unified framework of discrete gradient methods for DAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998). https://doi.org/10.1137/1.9781611971392

    Book  MATH  Google Scholar 

  2. Bajić, V.B.: Lyapunov function candidates for semistate systems. Int. J. Control 46(6), 2171–2181 (1987). https://doi.org/10.1080/00207178708934041

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15, 2nd edn. Springer, New York (2003)

    Google Scholar 

  4. Betsch, P.: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints. Comput. Methods Appl. Mech. Eng. 195(50–51), 7020–7035 (2006). https://doi.org/10.1016/j.cma.2005.01.027

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24, 2nd edn. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-3017-3

    Book  Google Scholar 

  6. Burger, M., Gerdts, M.: A survey on numerical methods for the simulation of initial value problems with sDAEs. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations, vol. IV, pp. 221–300. Springer, Cham (2017)

    Chapter  Google Scholar 

  7. Celledoni, E., Eidnes, S., Owren, B., Ringholm, T.: Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows. SIAM J. Sci. Comput. 40(6), A3789–A3806 (2018). https://doi.org/10.1137/18M1190628

    Article  MathSciNet  MATH  Google Scholar 

  8. Celledoni, E., Eidnes, S., Owren, B., Ringholm, T.: Energy preserving methods on Riemannian manifolds. eprints. arXiv:1805.07578 (2018)

  9. Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  10. Celledoni, E., Owren, B.: Preserving first integrals with symmetric Lie group methods. Discrete Contin. Dyn. Syst. 34(3), 977–990 (2014). https://doi.org/10.3934/dcds.2014.34.977

    Article  MathSciNet  MATH  Google Scholar 

  11. Furihata, D.: Finite difference schemes for \(\partial u/\partial t=(\partial /\partial x)^\alpha \delta G/\delta u\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999). https://doi.org/10.1006/jcph.1999.6377

    Article  MathSciNet  MATH  Google Scholar 

  12. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method—A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  13. Furihata, D., Mori, M.: General derivation of finite difference schemes by means of a discrete variation. Trans. Jpn. Soc. Ind. Appl. 8(3), 317–340 (1998) (in Japanese)

  14. Furihata, D., Sato, S., Matsuo, T.: A novel discrete variational derivative method using “average-difference methods”. JSIAM Lett. 8, 81–84 (2016). 10.14495/jsiaml.8.81

    Article  MathSciNet  Google Scholar 

  15. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Phys. D 132(1–2), 165–174 (1999). https://doi.org/10.1016/S0167-2789(99)00054-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  18. Ishikawa, A., Yaguchi, T.: Application of the variational principle to deriving energy-preserving schemes for the Hamilton equation. JSIAM Lett. 8, 53–56 (2016). https://doi.org/10.14495/jsiaml.8.53

    Article  MathSciNet  MATH  Google Scholar 

  19. Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J. Comput. Phys. 76(1), 85–102 (1988). https://doi.org/10.1016/0021-9991(88)90132-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Kojima, H.: Invariants preserving schemes based on explicit Runge–Kutta methods. BIT 56(4), 1317–1337 (2016). https://doi.org/10.1007/s10543-016-0608-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, M., Yin, Z.: Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter–Saxton equation. Discrete Contin. Dyn. Syst. 37(12), 6471–6485 (2017). https://doi.org/10.3934/dcds.2017280

    Article  MathSciNet  MATH  Google Scholar 

  22. Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution theory, Lyapunov functions, and stability. Autom. J. IFAC 48(5), 954–963 (2012). https://doi.org/10.1016/j.automatica.2012.02.041

    Article  MathSciNet  MATH  Google Scholar 

  23. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357, 1021–1045 (1999)

    Article  MathSciNet  Google Scholar 

  24. Miyatake, Y., Cohen, D., Furihata, D., Matsuo, T.: Geometric numerical integrators for Hunter–Saxton-like equations. Jpn. J. Ind. Appl. Math. 34(2), 441–472 (2017). https://doi.org/10.1007/s13160-017-0252-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Miyatake, Y., Yaguchi, T., Matsuo, T.: Numerical integration of the Ostrovsky equation based on its geometric structures. J. Comput. Phys. 231(14), 4542–4559 (2012). https://doi.org/10.1016/j.jcp.2012.02.027

    Article  MathSciNet  MATH  Google Scholar 

  26. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511609565

    Book  MATH  Google Scholar 

  27. Quispel, G.R.W., Capel, H.W.: Solving ODE’s numerically while preserving a first integral. Phys. Lett. A 218, 223–228 (1996)

    Article  MathSciNet  Google Scholar 

  28. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A. Math. Theor. 41, 045,206 (2008)

    Article  MathSciNet  Google Scholar 

  29. Quispel, G.R.W., Turner, G.S.: Discrete gradient methods for solving ODE’s numerically while preserving a first integral. J. Phys. A 29, L341–349 (1996)

    Article  MathSciNet  Google Scholar 

  30. Reich, S.: On a geometrical interpretation of differential-algebraic equations. Circuits Syst. Signal Process. 9(4), 367–382 (1990). https://doi.org/10.1007/BF01189332

    Article  MathSciNet  MATH  Google Scholar 

  31. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  32. Sato, S.: Stability and convergence of a conservative finite difference scheme for the modified Hunter-Saxton equation. BIT 59(1), 213–241 (2019). https://doi.org/10.1007/s10543-018-0726-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Sato, S., Matsuo, T.: On spatial discretization of evolutionary differential equations on the periodic domain with a mixed derivative. J. Comput. Appl. Math. 358, 221–240 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sato, S., Matsuo, T., Suzuki, H., Furihata, D.: A Lyapunov-type theorem for dissipative numerical integrators with adaptive time-stepping. SIAM J. Numer. Anal. 53(6), 2505–2518 (2015). https://doi.org/10.1137/140996719

    Article  MathSciNet  MATH  Google Scholar 

  35. Uhlar, S., Betsch, P.: On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems. Comput. Struct. 88(11), 737–754 (2010). https://doi.org/10.1016/j.compstruc.2010.03.003

    Article  Google Scholar 

  36. Wan, A.T.S., Bihlo, A., Nave, J.C.: The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations. SIAM J. Numer. Anal. 54(1), 86–119 (2016). https://doi.org/10.1137/140997944

    Article  MathSciNet  MATH  Google Scholar 

  37. Wan, A.T.S., Bihlo, A., Nave, J.C.: Conservative methods for dynamical systems. SIAM J. Numer. Anal. 55(5), 2255–2285 (2017). https://doi.org/10.1137/16M110719X

    Article  MathSciNet  MATH  Google Scholar 

  38. Wan, A.T.S., Nave, J.C.: On the arbitrarily long-term stability of conservative methods. eprints. arXiv:1607.06160 (2016)

Download references

Acknowledgements

The author is grateful to Kensuke Aishima and Takayasu Matsuo for valuable comments. The author thanks the anonymous reviewers for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Appendices

Appendix A: Continuity of \( {\overline{\nabla }}_{\mathrm {P}}V \)

  1. (i)

    V is quadratic, i.e., \( V(z) = (1/2) z^{\top } B z \) for a symmetric matrix B:

    in this case, since \( {\overline{\nabla }}_{\mathrm {P}}V(z,z') = B (z+z')/2 \) holds, it is clearly continuous map. Note that, in this case, \( {\overline{\nabla }}_{\mathrm {P}}V = {\overline{\nabla }}_{\mathrm {AVF}} V\).

  2. (ii)

    V is strictly convex:

    in this case, the inequality

    $$\begin{aligned} 0< V(z) - V(z') - \langle \nabla V(z') , z - z' \rangle < \left\langle \nabla V(z) - \nabla V(z'), z - z' \right\rangle \end{aligned}$$

    holds for any \( z \ne z' \). It implies that \( \theta (z,z') \in (0,1) \) holds for \( z \ne z'\). As \( {\overline{\nabla }}_{\mathrm {P}}V \) can also be written in the form

    $$\begin{aligned} {\overline{\nabla }}_{\mathrm {P}}V(z,z') = \nabla V(z') + \theta (z,z') \left( \nabla V(z) - \nabla V(z') \right) , \end{aligned}$$
    (A.1)

    the boundedness of \( \theta \) proves the continuity of \( {\overline{\nabla }}_{\mathrm {P}}V\).

  3. (iii)

    V is convex and \(L_V\)-smooth:

    in this case, we also use (A.1), but we prove that \( \theta (z,z') \) is bounded when \( \nabla V(z) \ne \nabla V(z') \). Since V is a convex function, we see

    $$\begin{aligned} 0 \le V(z) - V(z') - \langle \nabla V(z') , z - z' \rangle \le \left\langle \nabla V(z) - \nabla V(z'), z - z' \right\rangle . \end{aligned}$$

    This implies that \( \theta (z,z') \in [0,1] \) holds when the denominator of \( \theta (z,z') \) does not vanish. Moreover, \(L_V\)-smoothness provides us with the inequality

    $$\begin{aligned} \left\langle \nabla V(z) - \nabla V(z'), z - z' \right\rangle \ge \frac{1}{L_V} \left\| \nabla V(z) - \nabla V(z') \right\| ^2 \end{aligned}$$

    (note that the conjugate function \( V^{*} \) is \( 1 / L_V\)-strong convex). Summing up, we see that \( \theta \in [0,1] \) holds when \( \nabla V(z) \ne \nabla V(z') \).

Appendix B: Non-convex case: sine-Gordon equation

Here we consider the sine-Gordon equation \( u_{tx} = \sin u \) which has the conservation law \( {\mathscr {H}} (u) = - \int _{{\mathbb {S}}} \cos u \, {\mathrm {d}}x = \text {const.} \) and the implicit constraint \( {\mathscr {F}} (u) = \int _{{\mathbb {S}}} \sin u \, {\mathrm {d}}x = 0 \). The spatial discretization \( D {\dot{u}} = M \sin u \) satisfies the discrete counterparts \( H(u) = - \sum _{k=1}^K \cos u_k \) and \( F(u) = \sum _{k=1}^K \sin u_k \) of the conservation law and the implicit constraint.

However, since H is not convex (and not quadratic), we do not know whether \( {\overline{\nabla }}_{\mathrm {P}}H \) is continuous. Therefore, we use a trick to construct a discrete gradient which is compatible with properness, i.e., belongs to \( {\mathrm {car}}(D) \). Let us consider the expression \( H(u) = H_1 (u) + H_2 (u) \), where \( H_1 (u) = H(u) + (\alpha / 2) \langle u , P u \rangle \) and \( H_2 (u) = - (\alpha / 2) \langle u , P u \rangle \) (\( \alpha \in {\mathbb {R}}\) is a constant and P is the orthogonal projector on the set of zero-mean vectors). In the expression, (a) \( H_1\) and \(H_2\) are proper, and (b) \( H_2 \) is quadratic so that \( {\overline{\nabla }}_{\mathrm {P}}H_2 \) is continuous. Thus, roughly speaking, it is sufficient to choose the constant \( \alpha \) such that \(H_1\) is convex. This itself cannot be done since P is a singular matrix, but a sufficiently large \( \alpha \) provides us with the similar result as shown in Lemma B.1. To this end, we assume \( H_0 := H(u_0) < 0 \) (the case \( H_0 > 0 \) can be treated similarly).

Lemma B.1

Let \( H_0 < 0 \) be a constant. Then, if \( \alpha > 1 - K / H_0 \), the Hessian \( \nabla ^2 H_1 (u ) = \mathrm {diag} ( \cos u_k ) + \alpha P \) of \( {\widetilde{H}} \) is positive definite on the domain \( \{ u \in {\mathbb {R}}^K \mid H(u) = H_0 \} \).

Proof

It is sufficient to prove \( \langle {\widetilde{v}} , \nabla ^2 H_1 (u) {\widetilde{v}} \rangle > 0 \) holds for any \( {\widetilde{v}} \in \{ w \mid \Vert w \Vert = 1 \} = \{ v \pm \sqrt{ (1-x^2)/K } {\mathbf {1}} \mid v \in {\mathbb {R}}^K , \ \Vert v \Vert = x, \, \langle v,\ {\mathbf {1}} \rangle = 0, x \in [0,1] \} \). Since

$$\begin{aligned} 2 x \sqrt{1-x^2}&= 2 \sqrt{ \left( - \frac{1-x^2}{K} H_0 \right) \left( -\frac{K}{H_0} x^2 \right) } \le - \frac{1-x^2}{K} H_0 - \frac{K}{H_0} x^2 \end{aligned}$$

holds due to the inequality of arithmetic and geometric means, we see

$$\begin{aligned} \langle {\widetilde{v}} , \nabla ^2 H_1 (u) {\widetilde{v}} \rangle&= \sum _{k=1}^K (\cos u_k )(v_k)^2 \pm 2 \sqrt{ \frac{1-x^2}{K} } \langle v, \cos u \rangle - \frac{1-x^2}{K} H_0 + \alpha x^2 \\&\ge - \Vert v \Vert ^2 - 2 \sqrt{ \frac{1-x^2}{K} } \Vert v \Vert \Vert \cos u \Vert - \frac{1-x^2}{K} H_0 + \alpha x^2\\&\ge - x^2 - 2 x \sqrt{1-x^2} - \frac{1-x^2}{K} H_0 + \alpha x^2 \\&\ge - x^2 + \frac{1-x^2}{K} H_0 + \frac{K}{H_0} x^2 - \frac{1-x^2}{K} H_0 \\&\quad + \alpha x^2 = \left( - 1 + \frac{K}{H_0} + \alpha \right) x^2. \end{aligned}$$

Thus, for \( x \in (0,1] \), \( \langle {\widetilde{v}} , \nabla ^2 H_1 (u) {\widetilde{v}} \rangle > 0\) holds under the assumptions of this lemma. On the other hand, for the case \( x = 0\), i.e., \( {\widetilde{v}} = \sqrt{1/K} {\mathbf {1}} \), \( \langle {\widetilde{v}} , \nabla ^2 H_1 (u) {\widetilde{v}} \rangle = - H_0/K > 0 \) holds. \(\square \)

By using \( H_1 \) and \(H_2\), we can construct

$$\begin{aligned} {\widetilde{\nabla }} H(u,u') = {\overline{\nabla }}_{\mathrm {P}}H_1 (u,u') - \alpha P \frac{u + u'}{2} \end{aligned}$$
(B.1)

which can be used like as a discrete gradient (see Proposition B.1).

Proposition B.1

Suppose that \( \alpha > 1 - K / H_0 \). The function \( {\widetilde{\nabla }} H :{\mathbb {R}}^K \times {\mathbb {R}}^K \rightarrow {\mathbb {R}}^K \) defined by (B.1) satisfies

  • \( H(u) - H(u') = \langle {\widetilde{\nabla }} H (u,u'), u - u' \rangle \),

  • \( {\widetilde{\nabla }} H(u,u) = \nabla H(u) \),

  • \( {\widetilde{\nabla }} H(u,u+\epsilon ) \) is continuous in the neighborhood of \( \epsilon = 0\) as a function of \(\epsilon \) for each \( u \in \{ u \in {\mathbb {R}}^K \mid H(u) = H_0 \} \).

Proof

The first two conditions are immediate. The third condition also holds since the denominator of \( \theta \) with respect to \(H_1\) is positive in the neighborhood due to the positive definiteness of the Hessian. \(\square \)

Since we do not know the continuity of \( {\widetilde{\nabla }} H \) on the whole domain \( {\mathbb {R}}^K \), it cannot be referred to as a discrete gradient (recall Definition 1.1). Fortunately, however, we can construct a consistent numerical scheme by using \( {\widetilde{\nabla }} H \), because the continuity of the discrete gradient is just a sufficient condition for the consistency of the resulting numerical scheme. In fact, the scheme (6.3) using \( {\widetilde{\nabla }} H \) defined by (B.1) was found to be solvable by “fsolve” of MATLAB R2016b. Since the behavior is quite similar to the case of sinh-Gordon equation, we omit the numerical results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, S. Linear gradient structures and discrete gradient methods for conservative/dissipative differential-algebraic equations. Bit Numer Math 59, 1063–1091 (2019). https://doi.org/10.1007/s10543-019-00759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00759-2

Keywords

Mathematics Subject Classification

Navigation