Skip to main content
Log in

Directional total generalized variation regularization

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In inverse problems, prior information and a priori-based regularization techniques play important roles. In this paper, we focus on image restoration problems, especially on restoring images whose texture mainly follow one direction. In order to incorporate the directional information, we propose a new directional total generalized variation (DTGV) functional, which is based on total generalized variation (TGV) by Bredies et al. After studying the mathematical properties of DTGV, we utilize it as regularizer and propose the \(\hbox {L}^2\hbox {-}\mathrm {DTGV}\) variational model for solving image restoration problems. Due to the requirement of the directional information in DTGV, we give a direction estimation algorithm, and then apply a primal-dual algorithm to solve the minimization problem. Experimental results show the effectiveness of the proposed method for restoring the directional images. In comparison with isotropic regularizers like total variation and TGV, the improvement of texture preservation and noise removal is significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical problems in image processing: partial differential equations and the calculus of variations, 2nd edn, pp xxxii+377, vol. 147. Springer, New York (2006)

    Book  Google Scholar 

  2. Bayram, I., Kamasak, M.E.: A directional total variation. Eur. Signal Process. Conf. 19(12), 265–269 (2012). https://doi.org/10.1109/LSP.2012.2220349

    Article  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkels, B., Burger, M., Droske, M., Nemitz, O., Rumpf, M.: Cartoon extraction based on anisotropic image classification. In: Proceedings of the vision, modeling and visualization, pp 293–300 (2006)

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  6. Bredies, K.: Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty, pp. 44–77. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-54774-4_3

    Chapter  Google Scholar 

  7. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). https://doi.org/10.1137/090769521

    Article  MathSciNet  MATH  Google Scholar 

  8. Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011, 9th. International Conference on Sampling Theory and Applications, Singapore (2001)

  9. Calatroni, L., Lanza, A., Sgallari, F., Pragliola, M.: A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection. Arxiv preprint. (2018). https://www.researchgate.net/publication/329209882_A_flexible_space-variant_anisotropic_regularisation_for_image_restoration_with_automated_parameter_selection

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000). https://doi.org/10.1137/S1064827598344169

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–5 (1998). https://doi.org/10.1109/83.661187

    Article  Google Scholar 

  13. Delaney, A.H., Bresler, Y.: Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography. IEEE Trans. Image Process. 7(2), 204–221 (1998). https://doi.org/10.1109/83.660997

    Article  Google Scholar 

  14. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \({L}^1\)TV image restoration. SIAM J. Appl. Math. 2(4), 1168–1189 (2009)

    MATH  Google Scholar 

  15. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Appl. Math. 6(3), 1598–1625 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Easley, G.R., Labate, D., Colonna, F.: Shearlet-based total variation diffusion for denoising. IEEE Trans. Image Process. 18(2), 260–268 (2009). https://doi.org/10.1109/TIP.2008.2008070

    Article  MathSciNet  MATH  Google Scholar 

  17. Esedoglu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin–Osher–Fatemi model. Commun. Pure Appl. Math. 57(12), 1609–1626 (2004). https://doi.org/10.1002/cpa.20045

    Article  MathSciNet  MATH  Google Scholar 

  18. Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24(6), 1777–1790 (2015). https://doi.org/10.1109/TIP.2015.2409562

    Article  MathSciNet  MATH  Google Scholar 

  19. Fei, X., Wei, Z., Xiao, L.: Iterative directional total variation refinement for compressive sensing image reconstruction. IEEE Signal Process. Lett. 20(11), 1070–1073 (2013). https://doi.org/10.1109/LSP.2013.2280571

    Article  Google Scholar 

  20. Fernandez-Granda, C., Candes, E.J.: Super-resolution via transform-invariant group-sparse regularization. In: 2013 IEEE International Conference on Computer Vision, pp. 3336–3343 (2013). https://doi.org/10.1109/ICCV.2013.414. http://ieeexplore.ieee.org/document/6751526/

  21. Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 993–1000 (2013). https://doi.org/10.1109/ICCV.2013.127

  22. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Springer, Dordrecht (1995). https://doi.org/10.1007/978-1-4757-2377-9

    Book  Google Scholar 

  23. Hafner, D., Schroers, C., Weickert, J.: Introducing maximal anisotropy into second order coupling models. Ger. Conf. Pattern Recognit. 9358, 79–90 (2015)

    MathSciNet  Google Scholar 

  24. Holler, M., Kunisch, K.: On infimal convolution of total variation type functionals and applications. SIAM J. Imaging Sci. 7(4), 2258–2300 (2014)

    Article  MathSciNet  Google Scholar 

  25. Jespersen, K.M., Zangenberg, J., Lowe, T., Withers, P.J., Mikkelsen, L.P.: Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography. Compos. Sci. Technol. 136, 94–103 (2016). https://doi.org/10.1016/j.compscitech.2016.10.006

    Article  Google Scholar 

  26. Jespersen, K.M., Zangenberg, J., Lowe, T., Withers, P.J., Mikkelsen, L.P.: X-ray CT Data: Fatigue Damage in Glass Fibre/Polyester Composite Used for Wind Turbine Blades [Data-set] (2016). https://doi.org/10.5281/zenodo.154714

  27. Jonsson, E., Chan, T., Huang, S.C.: Total variation regularization in positron emission tomography. Tech. rep., Dept. Mathematics, University of California, Los Angeles (1998)

  28. Kongskov, R., Dong, Y.: Tomographic reconstruction methods for decomposing directional components. Inverse Probl. Imaging 12, 1429–1442 (2018). https://doi.org/10.3934/ipi.2018060

    Article  MathSciNet  MATH  Google Scholar 

  29. Kongskov, R., Dong, Y.: Directional total generalized variation regularization for impulse noise removal. In: Proceedings of Scale Space and Variational Methods in Computer Vision 2017, LNCS 10302, pp. 221–231 (2017)

    Google Scholar 

  30. Lefkimmiatis, S., Roussos, A., Maragos, P., Unser, M.: Structure tensor total variation. SIAM J. Imaging Sci. 8(2), 1090–1122 (2015). https://doi.org/10.1137/14098154X

    Article  MathSciNet  MATH  Google Scholar 

  31. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O (1/k2). Sov. Math. Dokl. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  32. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000). https://doi.org/10.1137/S0036139997327794

    Article  MathSciNet  MATH  Google Scholar 

  33. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. IEEE Intell. Veh. Symp. Proc. 1, 401–407 (2012). https://doi.org/10.1109/IVS.2012.6232171

    Article  Google Scholar 

  34. Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM: M2AN 34(4), 799–810 (2000). https://doi.org/10.1051/m2an:2000104

    Article  MathSciNet  MATH  Google Scholar 

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  36. Sandoghchi, S.R., Jasion, G.T., Wheeler, N.V., Jain, S., Lian, Z., Wooler, J.P., Boardman, R.P., Baddela, N.K., Chen, Y., Hayes, J.R., Fokoua, E.N., Bradley, T., Gray, D.R., Mousavi, S.M., Petrovich, M.N., Poletti, F., Richardson, D.J.: X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms. Opt. Express 22(21), 26181 (2014). https://doi.org/10.1364/OE.22.026181

    Article  Google Scholar 

  37. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60(1), 1–27 (1998). https://doi.org/10.1007/BF02684327

    Article  MathSciNet  MATH  Google Scholar 

  38. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Appl. Math. 8(3), 1894–1922 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. Approx. Theory XII San Antonio 2007, 360–385 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Setzer, S., Steidl, G., Teuber, T.: Restoration of images with rotated shapes. Numer. Algorithms 48(1–3), 49–66 (2008). https://doi.org/10.1007/s11075-008-9182-y

    Article  MathSciNet  MATH  Google Scholar 

  41. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete ll-type functionals. Commun. Math. Sci. 9(3), 797–827 (2011)

    Article  MathSciNet  Google Scholar 

  42. Steidl, G., Teuber, T.: Anisotropic smoothing using double orientation. In: Tai, X.-C., et al. (Eds.) Proceedings of the Scale Space and Variational Methods in Computer Vision, Second International Conference, pp. 477–489 (2009)

    Google Scholar 

  43. Steidl, G., Teuber, T.: Diffusion tensors for denoising sheared and rotated rectangles. IEEE Trans. Image Process. 12, 2640–2648 (2009)

    Article  Google Scholar 

  44. Temam, R.: Mathematical Problems in Plasticity. Gaulthier-Villars (1985)

  45. Turgay, E., Akar, G.B.: Directionally Adaptive Super-resolution. In: 2009 16th IEEE International Conference Image Processing, (1), pp. 1201–1204 (2009). https://doi.org/10.1109/ICIP.2009.5413662

  46. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996). https://doi.org/10.1137/0917016

    Article  MathSciNet  MATH  Google Scholar 

  47. Weickert, J.: Anisotropic diffusion in image processing. In: European Consortium for Mathematics in Industry, p. xii+170. B. G. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  48. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2), 111–127 (1999). https://doi.org/10.1023/A:1008009714131

    Article  MathSciNet  Google Scholar 

  49. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  50. Zhang, H., Wang, Y.: Edge adaptive directional total variation. J. Eng. (2013). https://doi.org/10.1049/joe.2013.0116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiu Dong.

Additional information

Communicated by Lothar Reichel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by Advanced Grant 291405 from the European Research Council, Grant No. 4002-00123 from the Danish Council for Independent Research Natural Sciences, and Grant 11701388 from the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kongskov, R.D., Dong, Y. & Knudsen, K. Directional total generalized variation regularization. Bit Numer Math 59, 903–928 (2019). https://doi.org/10.1007/s10543-019-00755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00755-6

Keywords

Mathematics Subject Classification

Navigation