Skip to main content
Log in

On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a positivity preserving implicit Euler–Maruyama scheme for a jump-extended Cox–Ingersoll–Ross (CIR) process where the jumps are governed by a compensated spectrally positive \(\alpha \)-stable process for \(\alpha \in (1,2)\). Different to the existing positivity preserving numerical schemes for jump-extended CIR or constant elasticity variance process, the model considered here has infinite activity jumps. We calculate, in this specific model, the strong rate of convergence and give some numerical illustrations. Jump extended models of this type were initially studied in the context of branching processes and was recently introduced to the financial mathematics literature to model sovereign interest rates, power and energy markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asmussen, S., Rosinski, J.: Approximations of small jumps of Levy processes with a view towards simulation. J. Appl. Probab. 38(2), 482–493 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy Process and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11(4), 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83(2), 602–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aghdas, A.S.F., Hossein, S.M., Tahmasebi, T.: Convergence and non-negativity preserving of the solution of balanced method for the delay CIR model with jump. arXiv:1712.03206, Working paper 2017

  6. Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat. 12, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bossy, M., Diop, A.: An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form \(|x|^\alpha \), \(\alpha \in [1/2, 1)\). Doctoral dissertation, INRIA (2007)

  8. Brigo, D., Alfonsi, A.: Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model. Finance Stoch. 9(1), 29–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A 468(2140), 1105–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diop, A.: Sur la discrétisation et le comportement à petit bruit d’EDS multidimensionnelles dont les coeffcients sont à dérivées singuliéres. Ph.D. thesis, INRIA (2003)

  11. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, Z., Li, Z.: Stochastic equations of non-negative processes with jumps. Stoch. Process. Appl. 120(3), 306–330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hashimoto, H.: Approximation and stability of solutions of SDEs driven by a symmetric \(\alpha \)-stable process with non-Lipschitz coefficients. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de probabilités XLV. Lecture Notes in Mathematics, vol. 2078, pp. 181–199. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Hashimoto, H., Tsuchiya, T.: On the convergent rates of Euler–Maruyama schemes for SDEs driven by rotation invariant \(\alpha \)-stable processes. RIMS Kokyuroku 1855, 229–236 (2013) (in Japanese)

  16. Hefter, H., Herzwurm, A.: Strong convergence rates for Cox–Ingersoll–Ross processes: full parameter range. J. Math. Anal. Appl. 459(2), 1079–1101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiao, Y., Ma, C., Scotti, S.: Alpha-CIR model with branching processes in sovereign interest rate modelling. Finance Stoch. 21(3), 789–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiao, Y., Ma, C., Scotti, S., Sgarra, C.: A branching process approach to power markets. Accepted for publication in Energy Econ. (2018). https://doi.org/10.1016/j.eneco.2018.03.002

  19. Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretization schemes for Lévy-driven SDEs. Stoch. Process. Appl. 120(11), 2258–2285 (2010)

    Article  MATH  Google Scholar 

  20. Li, Z., Mytnik, L.: Strong solutions for stochastic differential equations with jumps. Ann. Inst. H. Poincaré Probab. Stat. 47(4), 1055–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Z., Ma, C.: Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model. Stoch. Process. Appl. 125(8), 3196–3233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, L., Taguchi, D.: On the Euler–Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients. Stat. Probab. Lett. 146, 15–26 (2019)

    Article  MATH  Google Scholar 

  23. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583–1604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defied in a domain. Numer. Math. 128, 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stamatiou, I.: An explicit positivity preserving numerical scheme for CIR/CEV type delay models with jump. arXiv:1803.00327, Working Paper 2018

  26. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  27. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, X., Wang, X.: A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models. Numer. Algorithms 74(1), 39–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their careful readings and valuable advices on the writing of this article. The first author also wishes to thank Allan Loi for interesting discussions. The second author was supported by JSPS KAKENHI Grant No. 17H066833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Li.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Moment estimate of X

In this subsection, we show that for \(h(x) = |x|^\frac{1}{\alpha }\) the solution of (1.1) has \(\beta \)-th moment for \(\beta \in [1,\alpha )\).

Lemma 5.1

For \(\beta \in [1,\alpha )\), the \(\beta \)-th moment of X is finite or more explicitly, there exists a constant \(C_0>0\) such that

$$\begin{aligned} \sup _{t\leqslant T} \mathbb {E}\big [|X_{t}|^{\beta }\big ] \leqslant C_0(\alpha -\beta )^{-1} e^{C_0(\alpha -\beta )^{-1}T}. \end{aligned}$$
(5.1)

Proof

In the following, let \((\tau _m)_{m\in \mathbb {N}^+}\) be a localizing sequence of stopping times so that when stopped at \(\tau _m\), all local martingales are martingales. By apply the Itô formula to \(X^{\beta }\), we obtain

$$\begin{aligned} (X_{t \wedge \tau _m})^{\beta } =x_0^{\beta } +M_{t \wedge \tau _m} +I_{t \wedge \tau _m} +J_{t \wedge \tau _m} +K_{t \wedge \tau _m}, \end{aligned}$$
(5.2)

where we have set

$$\begin{aligned} {M}_t&:= \sigma _1 \beta \int _{0}^{t} (X_{s})^{\beta -1/2} dW_{s}\\&\quad +\int _{0}^{t} \int _{0}^{\infty } \left\{ (X_{s-}+\sigma _2 h(X_{s-})z)^{\beta }-(X_{s-})^{\beta } \right\} {{\widetilde{N}}}(ds,dz),\\ {I}_t&:=\beta \int _{0}^{t} (X_{s})^{\beta -1} \{a-kX_{s}\}ds, \quad {J}_t := \sigma _1^2 \frac{\beta (\beta -1)}{2} \int _{0}^{t} (X_{s})^{\beta -1}ds,\\ {K}_t&:= \int _{0}^{t} \int _{0}^{\infty } \Big \{ (X_{s-}+\sigma _2 h(X_{s-})z)^{\beta }-(X_{s-})^{\beta }-\sigma _2 h(X_{s-})z (X_{s-})^{\beta -1} \Big \} \nu (dz)ds. \end{aligned}$$

The martingale term \(M_{t\wedge \tau _m}\) can be removed after taking the expectation. Next we consider \(K_{t \wedge \tau _m}\). For \(z \in (0,1)\), by the second order Taylor’s expansion for the map \(x \mapsto x^{\beta }\), we have

$$\begin{aligned} (y+xz)^{\beta }-y^{\beta }-\beta xz y^{\beta -1}&=\alpha (\beta -1) |xz|^2 \int _{0}^{1} \theta (y+\theta xz)^{\beta -2} d\theta \\&\leqslant \frac{\beta (\beta -1) |xz|^2 }{y^{2-\beta }}. \end{aligned}$$

For \(z \in [1,\infty )\), by the first order Taylor’s expansion for the map \(x \mapsto x^{\beta }\) and the Hölder continuity of the map \(x \mapsto x^{\beta -1}\), we have

$$\begin{aligned} \left| (y+xz)^{\beta }-y^{\beta }-\beta xz y^{\beta -1}\right| \leqslant \alpha |xz| \int _{0}^{1} \left| (y+\theta xz)^{\beta -1}-y^{\beta -1} \right| d\theta \leqslant \alpha |xz|^{\beta }. \end{aligned}$$

Hence, the expectation of \(|K_{t \wedge \tau _m}|\) is bounded by

$$\begin{aligned} \beta (\beta -1)\mathbb {E}\left[ \int _{0}^{t \wedge \tau _m} \int _{0}^{1} |X_s|^{\frac{2}{\beta }+\beta -2} z^2 \nu (dz)ds \right] +\beta \mathbb {E}\left[ \int _{0}^{t \wedge \tau _m} \int _{1}^{\infty } |X_s| z^{\beta } \nu (dz) ds \right] . \end{aligned}$$

Since \(\beta \in [1,\alpha )\), then \(0< \frac{2}{\beta } + \beta -2 \leqslant \beta \) and there exists a constant \(C>0\) such that \(|x|^{\beta -1}\vee |x| \vee |x|^{\frac{2}{\beta }+\beta -2} \leqslant C(1+|x|^{\beta })\). Then by taking expectation on (5.2), and using the fact that \(\nu (dz) \,\,\propto \,\, z^{-(1+\alpha )} dz\), we see that there exists \(C_0>0\) such that

$$\begin{aligned} \mathbb {E}\big [|X_{t \wedge \tau _m}|^{\beta }\big ] \leqslant C_0(\alpha -\beta )^{-1} +C_0 (\alpha -\beta )^{-1}\int _{0}^{t} \mathbb {E}\big [|X_{s \wedge \tau _m}|^{\beta }\big ] ds. \end{aligned}$$

By Gronwall’s inequality, we obtain

$$\begin{aligned} \mathbb {E}\big [|X_{t \wedge \tau _m}|^{\beta }\big ] \leqslant C_0(\alpha -\beta )^{-1} e^{C_0(\alpha -\beta )^{-1}T}. \end{aligned}$$

Finally, we conclude by using Fatou’s lemma. \(\square \)

1.2 Yamada–Watanabe approximation technique

We introduce below the Yamada and Watanabe approximation technique, see also [27]. For each \(\delta \in (1,\infty )\) and \(\varepsilon \in (0,1)\), we select a continuous function \(\psi _{\delta , \varepsilon }: \mathbb {R}\rightarrow \mathbb {R}^+\) with support of \(\psi _{\delta , \varepsilon }\) belongs to \([\varepsilon /\delta , \varepsilon ]\) and is such that

$$\begin{aligned} \int _{\varepsilon /\delta }^{\varepsilon } \psi _{\delta , \varepsilon }(z) dz = 1 \quad \text { and } \quad 0 \leqslant \psi _{\delta , \varepsilon }(z) \leqslant \frac{2}{z \log \delta }, \,\,\,z > 0. \end{aligned}$$

We define a function \(\phi _{\delta , \varepsilon } \in C^2(\mathbb {R};\mathbb {R})\) by setting

$$\begin{aligned} \phi _{\delta , \varepsilon }(x)&:=\int _0^{|x|}\int _0^y \psi _{\delta , \varepsilon }(z)dzdy. \end{aligned}$$
(5.3)

It is straight forward to verify that \(\phi _{\delta , \varepsilon }\) has the following useful properties:

$$\begin{aligned}&|x| \leqslant \varepsilon + \phi _{\delta , \varepsilon }(x), \hbox { for any}\ x \in \mathbb {R}, \\&0 \leqslant |\phi '_{\delta , \varepsilon }(x)| \leqslant 1, \hbox { for any}\ x \in \mathbb {R}, \\&\phi '_{\delta , \varepsilon }(x) \geqslant 0, \text { for } x\geqslant 0 \text { and } \phi '_{\delta , \varepsilon }(x)< 0, \text { for } x< 0, \\&\phi ''_{\delta , \varepsilon }(\pm |x|)=\psi _{\delta , \varepsilon }(|x|) \leqslant \frac{2}{|x|\log \delta }\mathbf{1}_{[\varepsilon /\delta , \varepsilon ]}(|x|) \leqslant \frac{2\delta }{\varepsilon \log \delta }, \text { for any }x \in \mathbb {R}\setminus \{0\}. \end{aligned}$$

Lemma 5.2

(Lemma 1.3 in [22]) Suppose that the Lévy measure \(\nu \) satisfies \(\int _0^{\infty } \{z \wedge z^2\} \nu (dz) < \infty \). Let \(\varepsilon \in (0,1)\) and \(\delta \in (1,\infty )\). Then for any \(x \in \mathbb {R}\), \(y \in \mathbb {R}\setminus \{0\}\) with \(xy \geqslant 0\) and \(u>0\), it holds that

$$\begin{aligned}&\int _{0}^{\infty } \{\phi _{\delta ,\varepsilon }(y+xz)-\phi _{\delta ,\varepsilon }(y)-xz\phi _{\delta ,\varepsilon }'(y)\} \nu (dz)\nonumber \\&\quad \leqslant 2 \cdot \mathbf{1}_{(0,\varepsilon ]}(|y|) \left\{ \frac{|x|^2}{\log \delta } \left( \frac{1}{|y|} \wedge \frac{\delta }{\varepsilon }\right) \int _{0}^{u} z^2 \nu (dz) + |x| \int _{u}^{\infty } z \nu (dz) \right\} . \end{aligned}$$

Lemma 5.3

(Lemma 1.4 in [22]) Suppose that the Lévy measure \(\nu \) satisfies \(\int _0^{\infty } \{z \wedge z^2\} \nu (dz) < \infty \). Let \(\varepsilon \in (0,1)\) and \(\delta \in (1,\infty )\). Then for any \(x,x' \in \mathbb {R}\), \(y \in \mathbb {R}\) and \(u \in (0,\infty ]\), it holds that

$$\begin{aligned}&\int _{0}^{\infty }\left| \phi _{\delta ,\varepsilon }(y+xz)-\phi _{\delta ,\varepsilon }(y+x'z)-(x-x')z\phi _{\delta ,\varepsilon }'(y) \right| \nu (dz) \nonumber \\&\quad \leqslant 2 \left\{ \frac{\delta ( |x-x'|^2+|x'||x-x'|)}{\varepsilon \log \delta }\int _{0}^{u} z^2 \nu (dz) + |x-x'| \int _{u}^{\infty } z \nu (dz) \right\} . \end{aligned}$$
(5.4)

In particular, if \(x'=0\), then

$$\begin{aligned}&\int _{0}^{\infty } \{\phi _{\delta ,\varepsilon }(y+xz)-\phi _{\delta ,\varepsilon }(y)-xz\phi _{\delta ,\varepsilon }'(y)\} \nu (dz)\nonumber \\&\quad \leqslant 2 \left\{ \frac{\delta |x|^2}{\varepsilon \log \delta }\int _{0}^{u} z^2 \nu (dz) + |x| \int _{u}^{\infty } z \nu (dz) \right\} . \end{aligned}$$
(5.5)

1.3 Estimates of the probability that D is negative

In the case where Z is an \(\alpha \)-stable compensated Lévy process with \(\alpha \in (1,2)\), where for \(q\geqslant 0\), the moment generating function is given by

$$\begin{aligned} \mathbb {E}\left[ e^{-qZ_t}\right] = \exp \left( \frac{tq^{\alpha }}{\sin (\pi (\alpha -1)/2)}\right) , \end{aligned}$$

see Jiao et al. [17]. The support of \(Z_t\) is not bounded below and it is not possible to find conditions on the parameters which guarantee that the process D is non-negative.

Proof of Lemma 2.1

One can estimate the conditional probability using the conditional Laplace transform, and for any \(m>0\),

$$\begin{aligned}&\mathbb {E}\big [e^{-mD_{t_{i+1}}}\big |\, \mathscr {F}_{t_i}\big ] \\&\quad = \exp \left( -m\left( a - \sigma _1^2/2\right) \varDelta t_i\right) \mathbb {E}\big [\exp \big (-m\big (x + \sigma _2 (|x|^\frac{1}{\alpha }\wedge H) \varDelta Z_{t_i} \big ) \big ) \big ] \Big |_{x= X^{H,n}_{t_i}}\\&\quad = \exp \left( -m\left( a - \sigma _1^2/2\right) \varDelta t_i\right) \exp \left( -m X^{H,n}_{t_i} \right) \exp \left( \frac{m^\alpha \varDelta t_i \sigma _2^\alpha (|X^{H,n}_{t_i}|\wedge H^\alpha )}{\sin (\pi (\alpha -1)/2)}\right) \\&\quad \leqslant \exp \left( -m\left( a - \sigma _1^2/2\right) \varDelta t_i\right) \exp \left( \left( \frac{m^{\alpha -1} \varDelta t_i \sigma _2^\alpha }{\sin (\pi (\alpha -1)/2)} - 1 \right) m X^{H,n}_{t_i} \right) . \end{aligned}$$

By setting m as the solution to

$$\begin{aligned} \frac{m^{\alpha -1} \varDelta t_i \sigma _2^\alpha }{\sin (\pi (\alpha -1)/2)} - 1 = 0 \end{aligned}$$

we eliminate \(X^{H,n}_{t_i}\) from the above expression, giving the upper bound

$$\begin{aligned} \exp \left( -\left( a-\sigma _1^2/2\right) \left( \sin \left( \pi (\alpha -1)/2\right) \right) ^{\frac{1}{\alpha -1}}\sigma _2^{-\frac{\alpha }{\alpha -1}}\left( 1/\varDelta t_i\right) ^{\frac{1}{\alpha -1}-1} \right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Taguchi, D. On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case. Bit Numer Math 59, 747–774 (2019). https://doi.org/10.1007/s10543-019-00753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00753-8

Keywords

Mathematics Subject Classification

Navigation