Skip to main content
Log in

A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We prove convergence of a finite difference scheme to the unique entropy solution of a general form of the Ostrovsky–Hunter equation on a bounded domain with non-homogeneous Dirichlet boundary conditions. Our scheme is an extension of monotone schemes for conservation laws to the equation at hand. The convergence result at the center of this article also proves existence of entropy solutions for the initial-boundary value problem for the general Ostrovsky–Hunter equation. Additionally, we show uniqueness using Kružkov’s doubling of variables technique. We also include numerical examples to confirm the convergence results and determine rates of convergence experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here, we have and therefore \(\lambda =\Delta t/\Delta x\) should satisfy \(\lambda \le 36\). However, since the bound from Lemma 1 allows for some growth of choosing a smaller \(\lambda \) can be neccessary.

References

  1. Amiranashvili, S., Vladimirov, A.G., Bandelow, U.: A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 58(2), 219–226 (2010)

    Article  Google Scholar 

  2. Bardos, C., Leroux, A.Y., Nedelec, J.C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, J.P.: Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves). Eur. J. Appl. Math. 16(1), 65–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunelli, J.C., Sakovich, S.: Hamiltonian structures for the Ostrovsky–Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(1), 56–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coclite, G., Karlsen, K., Kwon, Y.S.: Initial-boundary value problems for conservation laws with source terms and the Degasperis–Procesi equation. J. Funct. Anal. 257(12), 3823–3857 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coclite, G., Ridder, J., Risebro, N.: A convergent finite difference scheme for the Ostrovsky–Hunter equation on a bounded domain. BIT Numer. Math. 57(1), 93–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coclite, G., di Ruvo, L., Karlsen, K.: Some wellposedness results for the Ostrovsky–Hunter equation. In: Hyperbolic Conservation Laws and Related Analysis with Applications, pp. 143–159. Springer (2014)

  8. Coclite, G.M., di Ruvo, L.: Oleinik type estimates for the Ostrovsky–Hunter equation. J. Math. Anal. Appl. 423(1), 162–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coclite, G.M., di Ruvo, L.: Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky–Hunter equation. J. Hyperbolic Differ. Equ. 12(02), 221–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coclite, G.M., di Ruvo, L.: Well-posedness results for the short pulse equation. Z. Angew. Math. Phys. 66(4), 1529–1557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coclite, G.M., di Ruvo, L.: Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll. Unione Mat. Italiana 8(1), 31–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coclite, G.M., di Ruvo, L.: Well-posedness of the Ostrovsky–Hunter equation under the combined effects of dissipation and short-wave dispersion. J. Evol. Equ. 16(2), 365–389 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coclite, G.M., di Ruvo, L., Karlsen, K.H.: The initial-boundary-value problem for an Ostrovsky–Hunter type equation. In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis pp. 97–109 (2018)

  14. Dubois, F., Le Floch, P.: Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws, pp. 96–104. Vieweg+Teubner Verlag, Wiesbaden (1989)

    MATH  Google Scholar 

  15. Grimshaw, R.H., Helfrich, K., Johnson, E.R.: The reduced Ostrovsky equation: integrability and breaking. Stud. Appl. Math. 129(4), 414–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws, vol. 152. Springer, New York (2015)

    Book  MATH  Google Scholar 

  18. Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)

    MathSciNet  Google Scholar 

  19. Karlsen, K., Risebro, N., Storrøsten, E.: \(L^1\) error estimates for difference approximations of degenerate convection–diffusion equations. Math. Comput. 83(290), 2717–2762 (2014)

    Article  MATH  Google Scholar 

  20. Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10(2), 217 (1970)

    Article  Google Scholar 

  21. Kuznetsov, N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)

    Article  Google Scholar 

  22. Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the short-pulse equation. Dyn. PDE 6(4), 291–310 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Monvel, A.B., Shepelsky, D.: The Ostrovsky–Vakhnenko equation: a Riemann–Hilbert approach. C. R. Math. 352(3), 189–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morrison, A., Parkes, E., Vakhnenko, V.: The N loop soliton solution of the Vakhnenko equation. Nonlinearity 12(5), 1427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ohlberger, M., Vovelle, J.: Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method. Math. Comput. 75(253), 113–150 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ostrovsky, L.: Nonlinear internal waves in a rotating ocean. Oceanology 18(2), 119–125 (1978)

    Google Scholar 

  28. Parkes, E.: The stability of solutions of Vakhnenko’s equation. J. Phys. A Math. Gen. 26(22), 6469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parkes, E.: Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals 31(3), 602–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. di Ruvo, L.: Discontinuous solutions for the Ostrovsky–Hunter equation and two-phase flows. Ph.D. thesis, University of Bari (2013)

  31. Strub, S.I., Bayen, M.A.: Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlinear Control 16(16), 733–748 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schäfer, T., Wayne, C.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D Nonlinear Phenom. 196(1), 90–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stepanyants, Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vakhnenko, V.: Solitons in a nonlinear model medium. J. Phys. A Math. Gen. 25(15), 4181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vakhnenko, V., Parkes, E.: The two loop soliton solution of the Vakhnenko equation. Nonlinearity 11(6), 1457 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vakhnenko, V., Parkes, E.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to thank Nils Henrik Risebro from the University of Oslo for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ruf.

Additional information

Communicated by Jan Nordström.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 642768.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridder, J., Ruf, A.M. A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions. Bit Numer Math 59, 775–796 (2019). https://doi.org/10.1007/s10543-019-00746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00746-7

Keywords

Mathematics Subject Classification

Navigation