Skip to main content
Log in

Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

For discretisations of hyperbolic conservation laws, mimicking properties of operators or solutions at the continuous (differential equation) level discretely has resulted in several successful methods. While well-posedness for nonlinear systems in several space dimensions is an open problem, mimetic properties such as summation-by-parts as discrete analogue of integration-by-parts allow a direct transfer of some results and their proofs, e.g. stability for linear systems. In this article, discrete analogues of the generalised product and chain rules that apply to functions of bounded variation are considered. It is shown that such analogues hold for certain second order operators but are not possible for higher order approximations. Furthermore, entropy dissipation by second derivatives with varying coefficients is investigated, showing again the far stronger mimetic properties of second order approximations compared to higher order ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161(1), 223–342 (2005). https://doi.org/10.4007/annals.2005.161.223

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.1994.1057

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999). https://doi.org/10.1006/jcph.1998.6114

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04048-1

    Book  MATH  Google Scholar 

  6. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures et Appl. 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  7. De Lellis, C., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Q. Appl. Math. 62(4), 687–700 (2004). https://doi.org/10.1090/qam/2104269

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Taylor & Francis Group, LLC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  9. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961

    Article  MathSciNet  MATH  Google Scholar 

  12. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144

    Article  MathSciNet  MATH  Google Scholar 

  13. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013

    Article  MathSciNet  MATH  Google Scholar 

  14. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016). https://doi.org/10.1016/j.amc.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  16. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. (2003). https://doi.org/10.1017/S0962492902000144

  17. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  18. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78862-1

    Book  MATH  Google Scholar 

  19. Harten, A.: On the nonlinearity of modern shock-capturing schemes. In: Chorin, A.J., Majda, A.J. (eds.) Wave Motion: Theory, Modelling, and Computation, Mathematical Sciences Research Institute Publications, vol. 7, pp. 147–201. Springer, New York (1987). https://doi.org/10.1007/978-1-4613-9583-6_6

    Chapter  Google Scholar 

  20. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972). https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

    Article  MathSciNet  Google Scholar 

  21. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)

    Chapter  Google Scholar 

  22. Krupa, S.G., Vasseur, A.F.: Single entropy condition for Burgers equation via the relative entropy method (2017). arXiv:1709.05610 [math.AP]

  23. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Birkhäuser, Basel (2002). https://doi.org/10.1007/978-3-0348-8150-0

    Book  MATH  Google Scholar 

  24. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X

    Article  MathSciNet  MATH  Google Scholar 

  25. Lefloch, P.G., Tzavaras, A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30(6), 1309–1342 (1999). https://doi.org/10.1137/S0036141098341794

    Article  MathSciNet  MATH  Google Scholar 

  26. Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51(3), 650–682 (2012). https://doi.org/10.1007/s10915-011-9525-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004). https://doi.org/10.1023/B:JOMP.0000027955.75872.3f

    Article  MathSciNet  MATH  Google Scholar 

  28. Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50(1), 85–108 (2010). https://doi.org/10.1007/s10543-010-0249-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Panov, E.Y.: Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy. Math. Notes 55(5), 517–525 (1994). https://doi.org/10.1007/BF02110380

    Article  MathSciNet  Google Scholar 

  30. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. (2017). https://doi.org/10.1007/s10915-017-0618-1. arXiv:1701.02264 [math.NA]

  31. Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9. arXiv:1609.08029 [math.NA]

  32. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. Thesis, TU Braunschweig (2018)

  33. Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021. arXiv:1705.10541 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  34. Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018). https://doi.org/10.1016/j.apnum.2018.01.019. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  35. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009. arXiv:1511.02052 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  36. Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017). https://doi.org/10.1016/j.jcp.2017.04.044. arXiv:1511.08408 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  37. Raymond, J.P.: A new definition of nonconservative products and weak stability results. Bolletino Della Unione Matematica Italiana 10–B(7), 681–699 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  39. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for the Euler equations. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications 2009: Proceedings of ENUMATH 2009, the 8th European Conference on Numerical Mathematics and Advanced Applications, Uppsala, July 2009, pp. 817–827. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11795-4_88

  40. Strand, B.: Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005

    Article  MathSciNet  MATH  Google Scholar 

  41. Svärd, M., Mishra, S.: Shock capturing artificial dissipation for high-order finite difference schemes. J. Sci. Comput. 39(3), 454–484 (2009). https://doi.org/10.1007/s00033-012-0216-x

    Article  MathSciNet  MATH  Google Scholar 

  42. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031

    Article  MathSciNet  MATH  Google Scholar 

  43. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  45. Vol’pert, A.I.: The spaces \(BV\) and quasilinear equations. Math. USSR-Sbornik 2(2), 225–267 (1967). https://doi.org/10.1070/SM1967v002n02ABEH002340

    Article  MATH  Google Scholar 

  46. Vol’pert, A.I., Hudjaev, S.I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff Publishers, Dodrecht (1985)

    Google Scholar 

  47. von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950). https://doi.org/10.1063/1.1699639

    Article  MathSciNet  MATH  Google Scholar 

  48. Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017). https://doi.org/10.1016/j.jcp.2017.03.036

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1. The author would like to thank the anonymous reviewers for their helpful comments and valuable suggestions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ranocha.

Additional information

Communicated by Jan Nordström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranocha, H. Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. Bit Numer Math 59, 547–563 (2019). https://doi.org/10.1007/s10543-018-0736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0736-7

Keywords

Mathematics Subject Classification

Navigation