Skip to main content
Log in

Explicit computational wave propagation in micro-heterogeneous media

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Explicit time stepping schemes are popular for linear acoustic and elastic wave propagation due to their simple nature which does not require sophisticated solvers for the inversion of the stiffness matrices. However, explicit schemes are only stable if the time step size is bounded by the mesh size in space subject to the so-called CFL condition. In micro-heterogeneous media, this condition is typically prohibitively restrictive because spatial oscillations of the medium need to be resolved by the discretization in space. This paper presents a way to reduce the spatial complexity in such a setting and, hence, to enable a relaxation of the CFL condition. This is done using the Localized orthogonal decomposition method as a tool for numerical homogenization. A complete convergence analysis is presented with appropriate, weak regularity assumptions on the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdulle, A., Grote, M.J.: Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp. 86(304), 549–587 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altmann, R., Chung, E., Maier, R., Peterseim, D., Pun, S.M.: Computational multiscale methods for linear heterogeneous poroelasticity. ArXiv e-prints 1801.00615 (2018)

  4. Arjmand, D., Runborg, O.: Analysis of heterogeneous multiscale methods for long time wave propagation problems. Multiscale Model. Simul. 12(3), 1135–1166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180, 9–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)

    MATH  Google Scholar 

  7. Brown, D., Gallistl, D.: Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints 1608.04243 (2016)

  8. Brown, D., Gallistl, D., Peterseim, D.: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree Methods for Partial Differential Equations VIII, Lecture Notes on Computer Science and Engineering, vol. 115, pp. 85–115. Springer, Cham (2017)

  9. Christiansen, S.H.: Foundations of finite element methods for wave equations of Maxwell type. Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)

    Chapter  Google Scholar 

  10. Weinan, E., Björn, E.: The heterogeneous multi-scale method for homogenization problems. In: Engquist, B., Runborg, O., Lötstedt, P. (eds.) Multiscale methods in science and engineering. Lecture notes in computational science and engineering, vol. 44, pp. 89–110. Springer, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media. Commun. Math. Sci. 9(1), 33–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engquist, B., Holst, H., Runborg, O.: Multiscale methods for wave propagation in heterogeneous media over long time. In: Numerical Analysis of Multiscale Computations, Lecture Notes on Computer Science and Engineering, vol. 82, pp. 167–186. Springer, Heidelberg (2012)

  14. Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (2010)

    Google Scholar 

  16. Gallistl, D., Peterseim, D.: Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hellman, F.: Gridlod. https://github.com/fredrikhellman/gridlod (2017). GitHub repository, commit 3e9cd20970581a32789aa1e21d7ff3f7e8f0b334

  18. Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds.) Topics in computational wave propagation. Lecture notes in computational science and engineering, vol. 31, pp. 201–264. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp. 87, 2765–2774 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oswald, P.: On a BPX-preconditioner for P1 elements. Computing 51(2), 125–133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Owhadi, H., Zhang, L.: Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Engrg. 198(3–4), 397–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Owhadi, H., Zhang, L.: Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. J. Comput. Phys. 347, 99–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes on Computer Science and Engineering, vol. 114, pp. 341–367. Springer, Cham (2016)

  28. Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput. 86(305), 1005–1036 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72(3), 1196–1213 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by Deutsche Forschungsgemeinschaft in the Priority Program 1748 Reliable simulation techniques in solid mechanics (PE2143/2-2). The authors thank the Hausdorff Institute for Mathematics in Bonn for the kind hospitality during the trimester program on multiscale problems in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Maier.

Additional information

Communicated by Jan Hesthaven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, R., Peterseim, D. Explicit computational wave propagation in micro-heterogeneous media. Bit Numer Math 59, 443–462 (2019). https://doi.org/10.1007/s10543-018-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0735-8

Keywords

Mathematics Subject Classification

Navigation