Skip to main content
Log in

Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Courant–Friedrichs–Lewy (CFL) condition guarantees the stability of the popular explicit leapfrog method for the wave equation. However, it limits the choice of the time step size to be bounded by the minimal mesh size in the spatial finite element mesh. This essentially prohibits any sort of adaptive mesh refinement that would be required to reveal optimal convergence rates on domains with re-entrant corners. This paper shows how a simple subspace projection step inspired by numerical homogenisation can remove the critical time step restriction so that the CFL condition and approximation properties are balanced in an optimal way, even in the presence of spatial singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. 86(304), 549–587 (2017)

  2. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36(153), 35–51 (1981). doi:10.2307/2007724

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  5. Carstensen, C., Gallistl, D., Schedensack, M.: \(L^2\) best-approximation of the elastic stress in the Arnold–Winther FEM. IMA J. Numer. Anal. 36(3), 1096–1119 (2016). doi:10.1093/imanum/drv051

    Article  MathSciNet  Google Scholar 

  6. Christiansen, S.H.: Foundations of finite element methods for wave equations of Maxwell type. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)

    Chapter  Google Scholar 

  7. Ciarlet Jr., P., He, J.: The singular complement method for 2d scalar problems. C. R. Math. Acad. Sci. Paris 336(4), 353–358 (2003). doi:10.1016/S1631-073X(03)00030-X

    Article  MathSciNet  MATH  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928). doi:10.1007/BF01448839

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). doi:10.1007/978-3-642-22980-0

    Google Scholar 

  10. Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31(3), 1985–2014 (2009). doi:10.1137/070709414

    Article  MathSciNet  MATH  Google Scholar 

  11. Diaz, J., Grote, M.J.: Multi-level explicit local time-stepping methods for second-order wave equations. Comput. Methods Appl. Mech. Eng. 291, 240–265 (2015). doi:10.1016/j.cma.2015.03.027

    Article  MathSciNet  Google Scholar 

  12. Elfverson, D., Georgoulis, E.H., Målqvist, A., Peterseim, D.: Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51(6), 3351–3372 (2013). doi:10.1137/120900113

    Article  MathSciNet  MATH  Google Scholar 

  13. Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. ArXiv e-prints. Preprint arXiv:1505.06931 (2015)

  14. Gallistl, D., Huber, P., Peterseim, D.: On the stability of the Rayleigh–Ritz method for eigenvalues. INS Preprint No. 1527. http://peterseim.ins.uni-bonn.de/research/pub/INS1527 (2015)

  15. Gaspoz, F.D., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29(4), 917–936 (2009). doi:10.1093/imanum/drn039

    Article  MathSciNet  MATH  Google Scholar 

  16. Henning, P., Morgenstern, P., Peterseim, D.: Multiscale partition of unity. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol. 100, pp. 185–204. Springer, NewYork (2015)

  17. Henning, P., Målqvist, A., Peterseim, D.: Two-level discretization techniques for ground state computations of Bose–Einstein condensates. SIAM J. Numer. Anal. 52(4), 1525–1550 (2014). doi:10.1137/130921520

    Article  MathSciNet  MATH  Google Scholar 

  18. Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013). doi:10.1137/120900332

    Article  MathSciNet  MATH  Google Scholar 

  19. Hochbruck, M., Sturm, A.: Error analysis of a second order locally implicit method for linear Maxwell’s equations. CRC 1173-Preprint, no. 2015/1, Karlsruher Institut für Technologie. http://www.waves.kit.edu/downloads/CRC1173_Preprint_2015-1 (2015)

  20. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Topics in Computational Wave Propagation. Lecture Notes Computation Science Engineering, vol. 31, pp. 201–264. Springer, Berlin (2003)

  21. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Målqvist, A., Peterseim, D.: Computation of eigenvalues by numerical upscaling. Numer. Math. 130(2), 337–361 (2014). doi:10.1007/s00211-014-0665-6

    Article  MathSciNet  Google Scholar 

  23. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014). doi:10.1090/S0025-5718-2014-02868-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Målqvist, A., Peterseim, D.: Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal. (2016). doi:10.1051/m2an/2016019

    Google Scholar 

  25. Müller, F.L., Schwab, C.: Finite elements with mesh refinement for wave equations in polygons. J. Comput. Appl. Math. 283, 163–181 (2015). doi:10.1016/j.cam.2015.01.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Oswald, P.: On a BPX-preconditioner for P1 elements. Computing 51(2), 125–133 (1993). doi:10.1007/BF02243847

    Article  MathSciNet  MATH  Google Scholar 

  27. Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. Preprint arXiv:1505.07611 (2015)

  28. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990). doi:10.2307/2008497

    Article  MathSciNet  MATH  Google Scholar 

  29. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advances in Numerical Mathematics. Wiley, Hoboken (1996)

    MATH  Google Scholar 

  30. Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7(4), 449–457 (1987). doi:10.1093/imanum/7.4.449, http://imajna.oxfordjournals.org/content/7/4/449.abstract

Download references

Acknowledgements

The authors would like to thank Andreas Longva for pointing out that mass lumping indeed works. Parts of this paper were written while the authors enjoyed the kind hospitality of the Hausdorff Institute for Mathematics (Bonn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Schedensack.

Additional information

D. Peterseim gratefully acknowledges support by the Hausdorff Center for Mathematics Bonn and by Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics: Development of non-standard discretization methods, mechanical and mathematical analysis” under the project “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterseim, D., Schedensack, M. Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes. J Sci Comput 72, 1196–1213 (2017). https://doi.org/10.1007/s10915-017-0394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0394-y

Keywords

Mathematics Subject Classification

Navigation