Skip to main content
Log in

A family of L-stable singly implicit peer methods for solving stiff IVPs

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper a one parameter family of s-stage singly implicit two-step peer (SIP) methods with order \((s-1)\) that are L-stable for some values of this parameter addressed for the numerical solution of stiff IVPs has been developed. General peer methods are multistage two-step methods for solving IVPs where all stages possess essentially the same accuracy and stability properties. In particular a s-stage SIP requires at each step the solution of s-implicit non-linear systems of equations of the same type in a similar way to the singly implicit Runge–Kutta methods. Here for each \( s \ge 3\) a family of one parameter s-stage SIP methods with order \((s-1)\) that are optimally zero-stable for arbitrary step size sequences is derived. For \( s \le 8\) intervals of values of this parameter that ensure their L-stability are obtained. Hence for \( s \le 8\), L-stable methods with order \((s-1)\) and a computational cost per step equivalent to s one-step backward Euler methods with the same Jacobian matrix are obtained. Further it is shown that under some restriction on the parameter each s-stage SIP method can be formulated as a cyclic multistep method of order \((s-1)\) and this implies that the Dahlquist barrier of second-order for A-stable linear multistep methods can be broken with suitable s-stage cyclic methods of these families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, S.: Implizite Peer–Verfahren für große steife Systeme. Ph.D. Thesis, Martin-Luther Universität Halle-Wittenberg (2014)

  2. Beck, S., Weiner, R., Podhaisky, H., Schmitt, B.A.: Implicit peer methods for large stiff ODE systems. J. Appl. Math. Comput. 38(1–2), 389–406 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  4. Cash, J.R.: On a class of cyclic methods for the numerical integration of stiff systems of O.D.E.s. BIT 17, 270–280 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cash, J.R.: On the integration of Stiff Systems of ODEs using extended backward differentiation formulae. Numer. Math. 34, 235–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cash, J.R.: Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proc. R. Soc. Lond. A 459, 797–815 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donelson, J., Hansen, E.: Cyclic composite multisep predictor–corrector methods. SIAM J. Numer. Anal. 8(1), 137–157 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  11. Iavernaro, F., Mazzia, F.: Block-boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput. 21(1), 323–339 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iavernaro, F., Mazzia, F.: Generalization of backward differentiation formulas for parallel computers. Numer. Algorithms 31(1–4), 139–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iavernaro, F., Mazzia, F.: Parallel implicit predictor corrector methods. Appl. Numer. Math. 42(1–3), 235–250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazzia, F.: Boundary value methods: GAMD, TOM. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015)

    Google Scholar 

  15. Podhaisky, H., Weiner, R., Schmitt, B.A.: Rosenbrock-type peer two-step methods. Appl. Numer. Math. 53, 409–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28(125), 145–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Radhakrishnan, K., Hindmarsh, A. C.: Description and use of LSODE, the Livermore solver for ordinary differential equations, LLNL report UCRL-ID-113855 (1993)

  18. Schmitt, B.A.: Algebraic criteria for A-stability of peer methods. arXiv:1506.05738v1 [math.NA] (2015)

  19. Schmitt, B.A., Weiner, R.: Efficient A-stable peer two-step methods. J. Comput. Appl. Math. 316, 319–329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 16(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Söderlind, G., Jay, L., Calvo, M.: Stiffness 1952–2012: sixty years in search of a definition. BIT Numer. Math. 55, 531–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tischer, P.E., Sacks-Davis, R.: A new class of cyclic multistep formulae for stiff systems. SIAM J. Sci. Stat. Comput. 4(4), 733–746 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tischer, P.E., Gupta, G.K.: An evaluation of some new cyclic linear multistep formulas for stiff ODEs. ACM Trans. Math. Softw. 11(3), 263–270 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, Chichester (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their very useful comments and suggestions that helped to improve greatly the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rández.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

This work was supported by D.G.I. Project MTM2016-77735-C3-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montijano, J.I., Podhaisky, H., Rández, L. et al. A family of L-stable singly implicit peer methods for solving stiff IVPs. Bit Numer Math 59, 483–502 (2019). https://doi.org/10.1007/s10543-018-0734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0734-9

Keywords

Mathematics Subject Classification

Navigation