Skip to main content
Log in

A stabilised finite element method for the plate obstacle problem

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We introduce a stabilised finite element formulation for the Kirchhoff plate obstacle problem and derive both a priori and residual-based a posteriori error estimates using conforming \(C^1\)-continuous finite elements. We implement the method as a Nitsche-type scheme and give numerical evidence for its effectiveness in the case of an elastic and a rigid obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aleksanyan, G.: Regularity of the free boundary in the biharmonic obstacle problem. arXiv preprint arXiv:1603.06819

  2. Bartels, S.: Numerical Methods for Nonlinear Partial Differential Equations, Springer Series in Computational Mathematics, vol. 47. Springer, Berlin (2015)

  3. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S., Gedicke, J., Sung, L.Y., Zhang, Y.: An a posteriori analysis of \({C}^0\) interior penalty methods for the obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 55(1), 87–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S., Sung, L.Y., Zhang, H., Zhang, Y.: A quadratic \({C}^0\) interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50(6), 3329–3350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S., Sung, L.Y., Zhang, H., Zhang, Y.: A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, 31–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Sung, L.Y., Zhang, Y.: Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81(279), 1247–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math. 31(1), 1–16 (1978/79)

  9. Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(1), 151–183 (1979)

  10. Chouly, F., Fabre, M., Hild, P., Pousin, J., Renard, Y.: Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38(2), 921–954 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Feng, K., Shi, Z.C.: Mathematical Theory of Elastic Structures. Springer; Science Press, Berlin; Beijing (1996)

    Google Scholar 

  13. Frehse, J.: Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abh. Math. Sem. Univ. Hamburg 36(1), 140–149 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fusciardi, A., Scarpini, F.: A mixed finite element solution of some biharmonic unilateral problem. Numer. Funct. Anal. Optim. 2(5), 397–420 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glowinski, R., Marini, L.D., Vidrascu, M.: Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal. 4(2), 127–167 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79(272), 2169–2189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gudi, T., Porwal, K.: A \({C}^{0}\) interior penalty method for a fourth-order variational inequality of the second kind. Numer. Methods Partial Differ. Equ. 32(1), 36–59 (2016)

    Article  MATH  Google Scholar 

  18. Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55(6), 2718–2744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gustafsson, T., Stenberg, R., Videman, J.: A posteriori estimates for conforming Kirchhoff plate elements. SIAM J. Sci. Comput. 40(3), A1386–A1407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, W., Hua, D., Wang, L.: Nonconforming finite element methods for a clamped plate with elastic unilateral obstacle. J. Integr. Equ. Appl. 18(2), 267–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Scholz, R.: Mixed finite element approximation of a fourth order variational inequality by the penalty method. Numer. Funct. Anal. Optim. 9, 233–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stenberg, R., Videman, J.: On the error analysis of stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 53, 2626–2633 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tosone, C., Maceri, A.: The clamped plate with elastic unilateral obstacles: a finite element approach. Math. Models Methods Appl. Sci. 13, 1231–1243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  26. Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Stenberg.

Additional information

Communicated by Axel Målqvist.

Funding from Tekes (Decision No. 3305/31/2015), the Finnish Cultural Foundation, the Portuguese Science Foundation (FCOMP-01-0124-FEDER-029408) and the Finnish Society of Science and Letters is greatly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafsson, T., Stenberg, R. & Videman, J. A stabilised finite element method for the plate obstacle problem. Bit Numer Math 59, 97–124 (2019). https://doi.org/10.1007/s10543-018-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0728-7

Keywords

Mathematics Subject Classification

Navigation