Skip to main content

Nitsche’s Method for the Obstacle Problem of Clamped Kirchhoff Plates

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

Abstract

The theory behind Nitsche’s method for approximating the obstacle problem of clamped Kirchhoff plates is reviewed. A priori estimates and residual-based a posteriori error estimators are presented for the related conforming stabilised finite element method and the latter are used for adaptive refinement in a numerical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Becker, P. Hansbo, R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM: Math. Model. Numer. Anal. 37, 209–225 (2003)

    Article  MathSciNet  Google Scholar 

  2. S. Brenner, L.-Y. Sung, Y. Zhang, Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81, 1247–1262 (2012)

    Article  MathSciNet  Google Scholar 

  3. S. Brenner, L.-Y. Sung, H. Zhang, Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, 31–42 (2013)

    Article  MathSciNet  Google Scholar 

  4. S. Brenner, J. Gedicke, L.-Y. Sung, Y. Zhang, An a posteriori analysis of C 0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 55, 87–108 (2017)

    Article  MathSciNet  Google Scholar 

  5. E. Burman, A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50, 1959–1981 (2012)

    Article  MathSciNet  Google Scholar 

  6. E. Burman, P. Hansbo, M.G. Larson, The penalty-free Nitsche’s method and non-conforming finite elements for the Signorini problem. SIAM J. Numer. Anal 55, 2523–2539 (2017)

    Article  MathSciNet  Google Scholar 

  7. L.A. Caffarelli, A. Friedman, The obstacle problem for the biharmonic operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, 151–183 (1979)

    Google Scholar 

  8. F. Chouly, P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51, 1295–1307 (2013)

    Article  MathSciNet  Google Scholar 

  9. F. Chouly, P. Hild, Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84, 1089–1112 (2015)

    Article  MathSciNet  Google Scholar 

  10. F. Chouly, M. Fabre, P. Hild, J. Pousin, Y. Renard, Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38, 921–954 (2018). https://doi.org/10.1093/imanum/drx024

    Article  MathSciNet  Google Scholar 

  11. I. Ekeland, R. Temam, Convex Analysis and Variational Problems (SIAM, Philadelphia, 1999)

    Book  Google Scholar 

  12. K. Feng, Z.-C. Shi, Mathematical Theory of Elastic Structures (Springer/Science Press, Berlin/Beijing, 1996)

    Google Scholar 

  13. L.P. Franca, R. Stenberg, Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  Google Scholar 

  14. J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abh. Math. Sem. Univ. Hamburg 36, 140–149 (1971)

    Article  MathSciNet  Google Scholar 

  15. T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)

    Article  MathSciNet  Google Scholar 

  16. T. Gudi, K. Porwal, A C 0 interior penalty method for a fourth-order variational inequality of the second kind. Numer. Methods Partial Differ. Equ. 32, 36–59 (2016)

    Article  MathSciNet  Google Scholar 

  17. T. Gustafsson, R. Stenberg, J. Videman, Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55, 2718–2744 (2017)

    Article  MathSciNet  Google Scholar 

  18. T. Gustafsson, R. Stenberg, J. Videman, A posteriori estimates for conforming Kirchhoff plate elements. arXiv preprint: 1707.08396

    Google Scholar 

  19. T. Gustafsson, R. Stenberg, J. Videman, A stabilized finite element method for the plate obstacle problem. arXiv preprint: 1711.04166

    Google Scholar 

  20. M. Juntunen, R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78, 1353–1374 (2009)

    Article  MathSciNet  Google Scholar 

  21. J.L. Lions, G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  Google Scholar 

  22. H. Melzer, R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikal belasteten Kirchhoffschen Platte. Bauingenieur 55, 181–189 (1980)

    Google Scholar 

  23. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg 36, 9–15 (1970/1971)

    Article  MathSciNet  Google Scholar 

  24. R. Scholz, Mixed finite element approximation of a fourth order variational inequality by the penalty method. Numer. Funct. Anal. Optim. 9, 233–247 (1987)

    Article  MathSciNet  Google Scholar 

  25. R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)

    Article  MathSciNet  Google Scholar 

  26. R. Stenberg, J. Videman, On the error analysis of stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 53, 2626–2633 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Portuguese Science Foundation (FCOMP-01-0124-FEDER-029408), Tekes (Decision number 3305/31/2015), the Finnish Academy of Science and Letters, and the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Stenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gustafsson, T., Stenberg, R., Videman, J. (2019). Nitsche’s Method for the Obstacle Problem of Clamped Kirchhoff Plates. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_36

Download citation

Publish with us

Policies and ethics