Skip to main content
Log in

Stability and convergence of a conservative finite difference scheme for the modified Hunter–Saxton equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The modified Hunter–Saxton equation models the propagation of short capillary-gravity waves. As the equation involves a mixed derivative, its initial value problem on the periodic domain is much more complicated than the standard evolutionary equations. Although its local well-posedness has recently been proved, the behavior of its solution is yet to be investigated. In this paper, a conservative finite difference scheme is derived as a reliable numerical method for this problem. Then, the stability of the numerical solution in the sense of the uniform norm, and the uniform convergence of the numerical solutions to sufficiently smooth exact solutions are rigorously proved. Discrete conservation laws are used to overcome the difficulty due to the mixed derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses, 2nd edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15. Springer, New York. Theory and applications (2003)

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

  3. Coclite, G.M., Ridder, J., Risebro, N.H.: A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain. BIT 57(1), 93–122 (2017). https://doi.org/10.1007/s10543-016-0625-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Faquir, M., Manna, M.A., Neveu, A.: An integrable equation governing short waves in a long-wave model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2084), 1939–1954 (2007). https://doi.org/10.1098/rspa.2007.1861

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, Y., Yin, Z.: Existence and singularities of solutions to an integrable equation governing short-waves in a long-wave model. J. Math. Phys. 51(9), 093,509, 16 (2010). https://doi.org/10.1063/1.3488968

  6. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method—A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  7. Furihata, D., Sato, S., Matsuo, T.: A novel discrete variational derivative method using average-difference methods. JSIAM Lett. 8, 81–84 (2016). https://doi.org/10.14495/jsiaml.8.81

    Article  MathSciNet  Google Scholar 

  8. Holden, H., Karlsen, K.H., Risebro, N.H.: Convergent difference schemes for the Hunter–Saxton equation. Math. Comput. 76(258), 699–744 (2007). https://doi.org/10.1090/S0025-5718-07-01919-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. In: Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988), Lectures in Appl. Math., vol. 26, pp. 301–316. Amer. Math. Soc., Providence, RI (1990)

  10. Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991). https://doi.org/10.1137/0151075

    Article  MathSciNet  MATH  Google Scholar 

  11. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. Lecture Notes in Math., vol. 448, pp. 25–70 (1975)

  12. Lees, M.: Energy inequalities for the solution of differential equations. Trans. Am. Math. Soc. 94, 58–73 (1960). https://doi.org/10.2307/1993277

    Article  MathSciNet  MATH  Google Scholar 

  13. Lenells, J.: Poisson structure of a modified Hunter–Saxton equation. J. Phys. A 41(28), 285,207, 9 (2008). https://doi.org/10.1088/1751-8113/41/28/285207

  14. Lenells, J.: Periodic solitons of an equation for short capillary-gravity waves. J. Math. Anal. Appl. 352(2), 964–966 (2009). https://doi.org/10.1016/j.jmaa.2008.09.070

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, M., Yin, Z.: Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter–Saxton equation. Discrete Contin. Dyn. Syst. 37(12), 6471–6485 (2017). https://doi.org/10.3934/dcds.2017280

    Article  MathSciNet  MATH  Google Scholar 

  16. Matsuno, Y.: Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations. Phys. Lett. A 359(5), 451–457 (2006). https://doi.org/10.1016/j.physleta.2006.06.065

    Article  MathSciNet  MATH  Google Scholar 

  17. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Unified approach to Hamiltonian systems, Poisson systems, gradient systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miyatake, Y., Cohen, D., Furihata, D., Matsuo, T.: Geometric numerical integrators for Hunter–Saxton-like equations. Jpn. J. Ind. Appl. Math. 34(2), 441–472 (2017). https://doi.org/10.1007/s13160-017-0252-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyatake, Y., Yaguchi, T., Matsuo, T.: Numerical integration of the Ostrovsky equation based on its geometric structures. J. Comput. Phys. 231(14), 4542–4559 (2012). https://doi.org/10.1016/j.jcp.2012.02.027

    Article  MathSciNet  MATH  Google Scholar 

  20. Obregon, M.A., Stepanyants, Y.A.: On numerical solution of the Gardner–Ostrovsky equation. Math. Model. Nat. Phenom. 7(2), 113–130 (2012). https://doi.org/10.1051/mmnp/20127210

    Article  MathSciNet  MATH  Google Scholar 

  21. Palais, R.S.: Foundations of Global Non-linear Analysis. W. A. Benjamin Inc, New York (1968)

    MATH  Google Scholar 

  22. Ridder, J., Ruf, A.M.: A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions (2018). arxiv:1805.07255

  23. Sato, S.: Linear gradient structures and discrete gradient methods for conservative/dissipative differential-algebraic equations (2018). arxiv:1805.04824

  24. Sato, S., Matsuo, T.: On spatial discretization of evolutionary differential equations on the periodic domain with a mixed derivative (2017). arxiv:1704.03645

  25. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196(1–2), 90–105 (2004). https://doi.org/10.1016/j.physd.2004.04.007

    Article  MathSciNet  MATH  Google Scholar 

  26. Yaguchi, T., Matsuo, T., Sugihara, M.: Conservative numerical schemes for the Ostrovsky equation. J. Comput. Appl. Math. 234(4), 1036–1048 (2010). https://doi.org/10.1016/j.cam.2009.03.008

    Article  MathSciNet  MATH  Google Scholar 

  27. Yin, Z.: On the structure of solutions to the periodic Hunter–Saxton equation. SIAM J. Math. Anal. 36(1), 272–283 (2004). https://doi.org/10.1137/S0036141003425672

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Yuto Miyatake and Takayasu Matsuo for their insightful comments. The author also appreciate the anonymous referees’ comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato.

Additional information

Communicated by Ragnar Winther.

The author is supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Appendices

Appendix

A Relation to the method of Miyatake et al. [18]

Miyatake et al. [18] derived the initial value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t} = \left( \partial _x^{\dagger } \right) ^2 \left( -\frac{1}{2} \left( u^2 \right) _{xxx} + 2 \omega u_x + \frac{1}{2} \left( u_x^2 \right) _x \right) \qquad &{} (t \in (0,T), x \in \mathbb {S}), \\ u (0,x) = u_0 (x) &{} (x \in \mathbb {S}), \end{array}\right. } \end{aligned}$$
(A.1)

by assuming that the underdetermined form (1.5) has a traveling wave solution (\( \partial _x^{\dagger } \) is a pseudo-inverse of the differential operator; see [18] for details). Accordingly, they devised underdetermined discretization (4.3) for preservation of \( {\mathscr {H}} \) and employed the Moore–Penrose inverse \( \sigma ^{\langle 2 \rangle }_x \) of the second-order central difference \( \delta ^{\langle 2 \rangle }_x \). Thus, their scheme can be written in the form

$$\begin{aligned} {\left\{ \begin{array}{ll} \delta ^+_t u^{\left( m \right) }_{ k } = \sigma ^{\langle 2 \rangle }_x \left( {\mathscr {A}}_{\mathrm {d}} \big ( u^{\left( m+1/2 \right) }_{ } \big ) u^{\left( m+1/2 \right) }_{ k } \right) \quad &{} (m=0,1,\dots ,M-1;k \in \mathbb {Z}),\\ u^{\left( 0 \right) }_{ k } = u_0 (k \varDelta x) &{} (k \in \mathbb {Z}),\\ u^{\left( m \right) }_{ k+K } = u^{\left( m \right) }_{ k } &{} ( m = 0,1,\dots ,M-1, k \in \mathbb {Z} ). \end{array}\right. } \end{aligned}$$
(A.2)

Although they were interested in traveling wave solutions, this scheme can be employed for the problem (A.1) even when the solution is not actually a traveling wave.

Actually, initial value problems (4.7) and (A.1) are equivalent for sufficiently smooth solutions. Thus, both our scheme (4.6) and that of Miyatake, Cohen, Furihata, and Matsuo [18] (A.2) can be regarded as a numerical scheme for the artificial initial value problem (4.7). Moreover, although the motivations and derivations of these schemes are different, the resulting schemes (4.6) and (A.2) happen to be equivalent for the generalized problem (4.7) (or (A.1)) as follows.

Theorem A.1

If \( u^{\left( m \right) }_{ k } \) is a solution of (4.6), then it is also a solution of (A.2), and vice versa.

Proof

To prove the former part, we assume that \( u^{\left( m \right) }_{ k } \) is a solution of (4.6). Then, owing to the conservation of \( \sum _{k=1}^K u^{\left( m \right) }_{ k } \varDelta x \), we observe that \( \delta ^+_t u^{\left( m \right) }_{ } \in \mathop {\mathrm {car}}\nolimits \big ( \delta ^{\langle 2 \rangle }_x \big ) \) holds. Therefore, on the basis of the property of the Moore–Penrose inverse, it holds that

$$\begin{aligned} \delta ^+_t u^{\left( m \right) }_{ k } = \sigma ^{\langle 2 \rangle }_x \left( {\mathscr {A}}_{\mathrm {d}} \big ( u^{\left( m+1/2 \right) }_{ } \big ) u^{\left( m+1/2 \right) }_{ k } \right) , \end{aligned}$$

which proves the former part.

On the other hand, for the latter part, we assume that \( u^{\left( m \right) }_{ k } \) is a solution of (A.2). By operating with \( \delta ^{\langle 2 \rangle }_x \) on both sides of the scheme in (A.2), we see that

$$\begin{aligned} \delta ^{\langle 2 \rangle }_x \delta ^+_t u^{\left( m \right) }_{ k } = \delta ^{\langle 2 \rangle }_x \sigma ^{\langle 2 \rangle }_x \left( {\mathscr {A}}_{\mathrm {d}} \big ( u^{\left( m+1/2 \right) }_{ } \big ) u^{\left( m+1/2 \right) }_{ k } \right) . \end{aligned}$$

Since \( \delta ^{\langle 2 \rangle }_x \sigma ^{\langle 2 \rangle }_x = P \), it is sufficient to prove that \( {\mathscr {A}}_{\mathrm {d}} \big ( u^{\left( m+1/2 \right) }_{ } \big ) u^{\left( m+1/2 \right) }_{ k } \in \mathop {\mathrm {range}}\nolimits \big ( \delta ^{\langle 2 \rangle }_x \big ) \). Therefore,

$$\begin{aligned} \sum _{k=1}^K {\mathscr {A}}_{\mathrm {d}} \left( u^{\left( m+1/2 \right) }_{ } \right) u^{\left( m+1/2 \right) }_{ k } \varDelta x&= \sum _{k=1}^K \delta ^{\langle 1 \rangle }_x \left( \left( 2 \omega - \left( \delta ^{\langle 2 \rangle }_x u^{\left( m+1/2 \right) }_{ k } \right) \right) u^{\left( m+1/2 \right) }_{ k } \right) \varDelta x \\&\quad - \sum _{k=1}^K \left( \delta ^{\langle 2 \rangle }_x u^{\left( m+1/2 \right) }_{ k } \right) \left( \delta ^{\langle 1 \rangle }_x u^{\left( m+1/2 \right) }_{ k } \right) \varDelta x \\&= - \sum _{k=1}^K \frac{1}{2} \delta ^+_x \left( \delta ^-_x u^{\left( m+1/2 \right) }_{ k } \right) ^2 \varDelta x = 0 \end{aligned}$$

proves the latter part. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, S. Stability and convergence of a conservative finite difference scheme for the modified Hunter–Saxton equation. Bit Numer Math 59, 213–241 (2019). https://doi.org/10.1007/s10543-018-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0726-9

Keywords

Mathematics Subject Classification

Navigation