Skip to main content
Log in

A further analysis of backward error in polynomial deflation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

When polynomial roots vary widely in order of magnitude, severe numerical instability problem may occur due to deflation schemes. Peters and Wilkinson (IMA J Appl Math 8(1):16–35, 1971) have proposed deflation schemes to prevent the numerical stability of the remaining approximate roots from being severely worse than the one of the deflated root. In this paper, from the viewpoint of backward error of approximate roots, we show that this root distribution can be utilized to help improve the backward stability of some remaining approximate roots when using the deflation schemes proposed by Peters and Wilkinson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akian, M., Bapat, R., Gaubert, S.: Max-Plus Algebra. Handbook of Linear Algebra. Chapman and Hall, London (2006)

    MATH  Google Scholar 

  2. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms 23(2–3), 127–173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broyden, C.G.: Error propagation in numerical processes. IMA J. Appl. Math. 14(2), 131–140 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broyden, C.G., Ford, J.A.: A new method of polynomial deflation. IMA J. Appl. Math. 16(3), 271–281 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, A.M.: Is the polynomial so perfidious? Numerische Mathematik 68(2), 225–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumitrescu, B., Tabus, I.: How to deflate polynomials in LSP computation. In: 1999 IEEE Workshop on Speech Coding Proceedings, pp. 52–54. IEEE (1999)

  7. Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling, W.: Numerical Recipes in C, p. 24. Press Syndicate of the University of Cambridge, New York (1992)

  8. Ford, J.A.: Weighted least-squares polynomial deflation. IMA J. Appl. Math. 16(3), 263–269 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ford, W.T.: Polynomial deflation using regression analysis. SIAM J. Numer. Anal. 15(2), 219–223 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, University City (2002)

    Book  MATH  Google Scholar 

  11. Kahan, W.: To solve a real cubic equation. Technical Report PAM-352, Center for Pure and Applied Mathmatics, University of California, Berkeley, CA, USA, November 1986 (1986)

  12. Li, R.-C.: Relative perturbation theory: I. Eigenvalue and singular value variations. SIAM J. Matrix Anal. Appl. 19(4), 956–982 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. McNamee, J.M.: A 2002 update of the supplementary bibliography on roots of polynomials. J. Comput. Appl. Math. 142(2), 433–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. McNamee, J.M.: Numerical Methods for Roots of Polynomials. Part I. Studies in Computational Mathematics, vol. 15. Elsevier, Cambridge (2005)

    Google Scholar 

  15. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials. Part II. Studies in Computational Mathematics, vol. 16. Elsevier, Cambridge (2013)

    Google Scholar 

  16. O’Neill, C.J., Downs, T.: A numerical accuracy consideration in polynomial deflation. Math. Comput. 32(144), 1144–1146 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peters, G., Wilkinson, J.H.: Practical problems arising in the solution of polynomial equations. IMA J. Appl. Math. 8(1), 16–35 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharify, V.Y.: Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis: Application to the Optimal Assignment Problem and to the Accurate Computation of Eigenvalues. Ph.D. thesis, Ecole Polytechnique X (2011)

  19. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309(1), 339–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wilkinson, J.H.: Rounding Errors in Algebraic Processes, Notes on Applied Sciences No. 32. Her Majesty’s Stationery Office, London (1963)

Download references

Acknowledgements

We thank an anonymous referee for his very detailed comments on the first version of manuscript which help us to improve the quality of the paper in both mathematics and English. We would like to thank Ding Lu, Tianyi Lu and Xiaotie Chen for their help to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangfeng Su.

Additional information

Communicated by Lars Eldén.

This research work is partially supported by NSFC (Nos. 91730303, 91330201).

Appendices

Appendix A: Proof of Lemma 3.2

We firstly give an estimation of \(\{r_i\}_{i\ne j}\) in (3.3) through the following lemma.

Lemma A.1

Let \(\{r_i\}_{i\ne j}\) be the ones in (3.3). They satisfy

$$\begin{aligned} \begin{array}{ll} |r_i|&{}\le \left( |a_i|+|a_{i+1}z_1|+\cdots +|a_{n}z_1^{n-i}|\right) 2\mu , \qquad i=n, n-1,\ldots ,j+1, \\ |r_i|&{}\le \left( |a_i|+|a_{i-1}{z_1}^{-1}|+\cdots +|a_{0}z_1^{-i}|\right) 2\mu , \qquad i=0,1,\ldots ,j-1. \end{array} \end{aligned}$$

Proof

Let \(\{\delta _i\}_{i=j+1}^{n-1}\) and \(\{\varepsilon _i\}_{i=j+1}^{n-1}\) correspond to the round-off error in addition and multiplication respectively. According to the IEEE floating point arithmetic, we have

$$\begin{aligned} \hat{c}_{n-1}=a_n, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \hat{c}_{n-2}&=\text {fl}\left( a_{n-1}+z_1\hat{c}_{n-1}\right) \\&=a_{n-1}\left( 1+\delta _{n-1}\right) +z_1\hat{c}_{n-1} \left( 1+\delta _{n-1}\right) \left( 1+\varepsilon _{n-1}\right) \\&=a_{n-1}+\hat{c}_{n-1}z_1-r_{n-1}, \end{aligned} \end{aligned}$$

where \(|\delta _{n-1}|\le \mu , |\varepsilon _{n-1}|\le \mu \) and

$$\begin{aligned} |r_{n-1}|=|a_{n-1}\delta _{n-1}+z_1\hat{c}_{n-1}\left( \delta _{n-1}+\varepsilon _{n-1}\right) |\le \left( |a_{n-1}|+|z_1a_n|\right) 2\mu . \end{aligned}$$

Recursively, for \(i=n-2,\ldots ,j+1,\)

$$\begin{aligned} \begin{aligned} \hat{c}_{i-1}&=\text {fl}(a_{i}+z_1\hat{c}_{i})\\&=a_i(1+\delta _{i})+z_1\hat{c}_{i}\left( 1+\delta _{i}\right) \left( 1+\varepsilon _{i}\right) \\&=a_i+z_1\hat{c}_{i}-r_i,\\ \end{aligned} \end{aligned}$$

where \(|\delta _{i}|\le \mu \) and \( |\varepsilon _{i}|\le \mu \). Expanding the expression of \(r_i\) and ignoring the high order terms of \(\mu \) give that

$$\begin{aligned} \begin{aligned} |r_i|&\le (|a_i|+|z_1\hat{c}_i|)2\mu \\&\le \left( |a_i|+|z_1\left( a_{i+1}+z_1\hat{c}_{i+1}\right) |\right) 2\mu \\&\le \cdots \\&\le \left( |a_i|+|a_{i+1}z_1|+\cdots +|a_{n}z_1^{n-i}|\right) 2\mu . \end{aligned} \end{aligned}$$

Similarly, we have

$$\begin{aligned} |r_i|\le \left( |a_i|+|a_{i-1}{z_1}^{-1}|+\cdots +|a_{0}z_1^{-i}|\right) 2\mu , \qquad i=0,1,\ldots ,j-1. \end{aligned}$$

\(\square \)

The proof of Lemma 3.2 is as follows.

Proof (Proof of Lemma 3.2)

It is obvious that

$$\begin{aligned} \begin{aligned} \frac{\sum _{i \not = j}\left| z_2^i-\left( \frac{z_2}{z_1}\right) ^jz_1^{i} \right| \times |r_i|}{\sum _i |a_i z_2^i|}&\le \frac{\sum _{i \not = j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|}+\frac{\sum _{i \not = j}\left| \left( \frac{z_2}{z_1}\right) ^jz_1^{i} \right| \times |r_i|}{\sum _i |a_i z_2^i|}.\\ \end{aligned} \end{aligned}$$
(A.1)

We firstly give an estimation of the first part in (A.1).

According to Lemma A.1,

$$\begin{aligned} \begin{aligned} \frac{\sum _{i> j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|}&\le \frac{\sum _{i> j}(|z_2/z_1|)^i\left( |a_iz_1^i|+\cdots +|a_nz_1^n|\right) }{\sum _i |a_i z_2^i|}2\mu \\&\le \max _{i>j} \left\{ \left| {z_2}/{z_1}\right| ^i\right\} \times \frac{\sum _{i > j}\left( |a_iz_1^i|+\cdots +|a_nz_1^n|\right) }{\sum _i |a_i z_2^i|}2\mu .\\ \end{aligned} \end{aligned}$$

When \(|z_2/z_1|\le 1\), we have

$$\begin{aligned} \max _{i>j} \left\{ |z_2/z_1|^i\right\} \le |z_2/z_1|^j \end{aligned}$$

and

$$\begin{aligned} \frac{\sum _{i > j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|} \le \frac{\sum _{i}|a_i z_1^i|}{|a_jz_1^j|} \times \frac{|a_jz_2^j|}{\sum _i |a_i z_2^i|}2\mu . \end{aligned}$$

When \(|z_2/z_1|\ge 1\), we have

$$\begin{aligned} \begin{aligned} \frac{\sum _{i> j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|}&\le \frac{\sum _{i> j}\left( |a_iz_2^i|+\cdots +|a_nz_2^n||z_1/z_2|^{n-i}\right) }{\sum _i |a_i z_2^i|}2\mu \\&\le \frac{\sum _{i > j}\left( |a_iz_2^i|+\cdots +|a_nz_2^n|\right) }{\sum _i |a_i z_2^i|} 2\mu \\&\le 2\mu . \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \frac{\sum _{i > j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|}&\le \max \left\{ 1,\frac{\sum _{i}|a_i z_1^i|}{|a_jz_1^j|} \times \frac{|a_jz_2^j|}{\sum _i |a_i z_2^i|}\right\} 2\mu . \end{aligned} \end{aligned}$$

Similarly,

$$\begin{aligned} \frac{\sum _{i < j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|} \le \max \left\{ 1,\frac{\sum _{i}|a_i z_1^i|}{|a_jz_1^j|} \times \frac{|a_jz_2^j|}{\sum _i |a_i z_2^i|}\right\} 2\mu . \end{aligned}$$

It follows that

$$\begin{aligned} \frac{\sum _{i \ne j}\left| z_2^i\right| |r_i|}{\sum _i |a_i z_2^i|} \le \max \left\{ 1,\left( \frac{\sum _i|a_i z_1^i|}{|a_jz_1^i|} \times \frac{|a_jz_2^i|}{\sum _i |a_i z_2^i|}\right) \right\} 4\mu . \end{aligned}$$

We can similarly analyze the second part in (A.1) and get the following estimation

$$\begin{aligned} \begin{aligned} \frac{\sum _{i \ne j}\left| \left( \frac{z_2}{z_1}\right) ^jz_1^{i} \right| \times |r_i|}{\sum _i |a_i z_2^i|}&\le \max \left\{ 1,\left( \frac{\sum _i|a_i z_1^i|}{|a_jz_1^i|} \times \frac{|a_jz_2^i|}{\sum _i |a_i z_2^i|}\right) \right\} 4\mu . \end{aligned} \end{aligned}$$

Summing up those formulas above, we have

$$\begin{aligned} \frac{\sum _{i \not = j}\left| z_2^i-\left( \frac{z_2}{z_1}\right) ^jz_1^{i} \right| \times |r_i|}{\sum _i |a_i z_2^i|}\le \max \left\{ 1, \frac{\sum _i|a_i z_1^i|}{|a_jz_1^j|} \times \frac{|a_jz_2^j|}{\sum _i |a_i z_2^i|} \right\} 8 \mu . \end{aligned}$$

\(\square \)

Appendix B: Some polynomial-related estimations

Let

$$\begin{aligned} {} p(x)=\sum _{i=0}^n a_ix^i=a_n(x-x_n)(x-x_{n-1})\ldots (x-x_1). \end{aligned}$$
(B.1)

Comparing the both sides in (B.1), the coefficients of p(x) satisfy

$$\begin{aligned} |a_i|=\left| \sum _{1\le l_{n-i}<\cdots <l_{1}\le n} a_nx_{l_{1}}x_{l_{2}}\cdots x_{l_{n-i}}\right| . \end{aligned}$$
(B.2)

The following proposition estimates the polynomial coefficients.

Proposition B.1

Let \(|x_1|\le |x_2|\le \cdots \le |x_n|\) be the roots of p(x). For a large K, if \(K|x_r|\le |x_{r+1}|,\) then

$$\begin{aligned} |a_r| = \left| a_n\prod \nolimits _{r+1\le i\le n}x_i\right| (1+\delta _r), \end{aligned}$$

where \(\delta _r\) depends on Knr, and \(\delta _r\rightarrow 0\) as \(K\rightarrow \infty .\)

Proof

According to the expression of \(a_r\) in (B.2), we have

$$\begin{aligned} |a_r| =\left| a_n\prod \nolimits _{r+1\le i\le n}x_i\right| (1+\delta _r), \end{aligned}$$

where

$$\begin{aligned} \delta _r=\frac{\left| \sum _{1\le l_{n-r}<\cdots <l_{1}\le n} x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-r}}\right| -\left| \prod \nolimits _{r+1\le i\le n}x_i\right| }{\left| \prod \nolimits _{r+1\le i\le n}x_i\right| }. \end{aligned}$$

Since \( K|x_r|\le |x_{r+1}|,\) we have

$$\begin{aligned} \left| \prod \nolimits _{r+1\le i\le n}x_i\right| \ge K |x_r|\left| \prod \nolimits _{r+2\le i\le n}x_i\right| . \end{aligned}$$
(B.3)

So are the other terms in the expression of \(|a_r|\). Therefore

$$\begin{aligned} \begin{aligned} |\delta _r|\le \sum _{1\le l_{n-r}<\cdots <l_{1}\le n} \left| \frac{x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-r}}}{\prod \nolimits _{r+1\le i\le n}x_i} \right| -1\le \mathscr {O}\left( \frac{C_n^{n-r}}{K}\right) . \end{aligned} \end{aligned}$$

Therefore, \(\delta _r\) depends on Knr, and \(\delta _r\rightarrow 0\) as \(K\rightarrow \infty .\)\(\square \)

The following proposition estimates the absolute sum of a polynomial at some point.

Proposition B.2

Let \(|x_1|\le |x_2|\le \cdots \le |x_n|\) be the roots of p(x). If \(K|x_{r-1}|\le |x_r|\le |x_{r+1}|/K,\) then

$$\begin{aligned} |a_rx_r^r|=|a_{r-1}x_r^{r-1}|(1+\delta _1), \end{aligned}$$

and

$$\begin{aligned} \sum _{i=0}^n |a_ix_r^i|= (|a_rx_r^r|+|a_{r-1}x_r^{r-1}|)(1+\delta _2), \end{aligned}$$

where \(\delta _1\rightarrow 0 \) and \( \delta _2\rightarrow 0\) as \(K\rightarrow \infty .\) For \(r=1\) or \(r=n\), these still hold if \(|x_1|\le |x_2|/K\) or \(K|x_{n-1}|\le |x_n|\) respectively.

Proof

Due to Proposition B.1, since \(K|x_{r-1}|\le |x_r|\le |x_{r+1}|/K,\) we have

$$\begin{aligned} |a_r| = \left| a_n\prod \nolimits _{r+1\le i\le n}x_i\right| (1+\delta _r), \end{aligned}$$

and

$$\begin{aligned} |a_{r-1}| =\left| a_n\prod \nolimits _{r\le i\le n}x_i\right| (1+\delta _{r-1}), \end{aligned}$$

where \(\delta _r\rightarrow 0\) and \(\delta _{r-1}\rightarrow 0 \) as \(K\rightarrow \infty .\) Therefore,

$$\begin{aligned} \left| a_rx_r^r\right| =\frac{|1+\delta _{r-1}|}{|1+\delta _r|}\left| a_{r-1}x_r^{r-1}\right| = |a_{r-1}x_r^{r-1}|(1+\delta _1), \end{aligned}$$

where \(\delta _1\rightarrow 0\) as \(K\rightarrow \infty .\)

When \(i>r,\) we have

$$\begin{aligned} \begin{aligned} |a_ix_r^i|&=\left| \sum \nolimits _{1\le l_{n-i}<\cdots <l_{1}\le n} a_nx_{l_{1}}x_{l_{2}}\cdots x_{l_{n-i}}x_r^i\right| \\&\le C_{n}^{n-i} \frac{1}{K^{i-r}} \left| a_nx_{n}x_{n-1}\cdots x_{r+1}x_r^r\right| \\&\le C_{n}^{n-i} \frac{1}{K^{i-r}} |a_rx_r^r|(1+\delta _r)\\&=|a_rx_r^r|\hat{\delta }_i, \end{aligned} \end{aligned}$$
(B.4)

where \(\hat{\delta }_i \rightarrow 0\) as \(K\rightarrow \infty .\) Similarly, when \(i<r-1,\) we have \(|a_ix_r^i|= |a_rx_r^r|\hat{\delta }_i \), where \(\hat{\delta }_i \rightarrow 0\) as \(K\rightarrow \infty .\) It leads to

$$\begin{aligned} \sum _{i=0}^n |a_ix_r^i| = \left( |a_rx_r^r|+|a_{r-1}x_r^{r-1}|\right) (1+\delta _2), \end{aligned}$$

where \(\delta _2\rightarrow 0\) as \(K\rightarrow \infty .\)

We have a similar analysis for \(r=1\) or \(r=n\) and we omit the details. \(\square \)

Appendix C: Performance of composite deflation for general cases

Theorem C.1

Let \(|x_1|\le |x_2|\le \cdots \le |x_n|\) be the roots of a polynomial and \(\hat{x}_i=x_i(1+\gamma _i)\) be the approximation of \(x_i\) for all i. If \(|x_r|\ge K|x_k|\) or \(|x_r|\le |x_k|/K\) for a large K and choose \(j={\arg \max }_{i=0,1,\ldots ,n} |a_i\hat{x}_r^i|\) to deflate \(\hat{x}_r\), then for \(k>r,\)

$$\begin{aligned} \begin{aligned} \left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j \times \frac{\sum _i |a_i \hat{x}_r^i|}{\sum _i|a_i \hat{x}_k^i|} \le \gamma \beta \times \frac{\left| \sum _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-j}}\right| }{\sum _{m={j}}^{n}\left| \sum _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| },\\ \end{aligned} \end{aligned}$$

where \(\gamma \rightarrow 1\) as \(\gamma _r,\gamma _k\rightarrow 0\) and \(\beta \rightarrow n+1\) as \(K \rightarrow \infty . \)

For \(k<r,\)

$$\begin{aligned} \begin{aligned} \left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j \times \frac{\sum _i |a_i \hat{x}_r^i|}{\sum _i|a_i \hat{x}_k^i|} \le \hat{\gamma }\hat{\beta } \times \frac{\left| \sum _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-j}}\right| }{\sum _{m=0}^{j}\left| \sum _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| },\\ \end{aligned} \end{aligned}$$

where \(\hat{\gamma } \rightarrow 1\) as \(\gamma _r,\gamma _k\rightarrow 0\) and \(\hat{\beta }\rightarrow n+1\) as \(K \rightarrow \infty . \)

Proof

When \(k>r,\) since \(|x_r|\le |x_k|\), we have \(|x_r|\le |x_k|/K\). Considering that \( j={\arg \max }_{i=0,1,\ldots ,n} |a_i\hat{x}_r^i| \), when \(i<j\), we have

$$\begin{aligned} \begin{aligned} |a_i\hat{x}_k^i|&=|a_i\hat{x}_r^i||\hat{x}_k/\hat{x}_r|^i \\&\le |a_j\hat{x}_r^j||\hat{x}_k/\hat{x}_r|^i\\&= |a_j\hat{x}_r^j||\hat{x}_k/\hat{x}_r|^j|\hat{x}_k/\hat{x}_r|^{i-j}\\&\le \left| \frac{1+\gamma _k}{1+\gamma _r}\right| ^{i-j} \frac{1}{K^{j-i}}|a_j\hat{x}_k^j|. \end{aligned} \end{aligned}$$

It leads to

$$\begin{aligned} \sum _{i=0}^n |a_i\hat{x}_k^i|= (1+\delta _1)\sum _{i=j}^{n}|a_i\hat{x}_{k}^i|, \end{aligned}$$

where \(\delta _1\rightarrow 0\) as \(K\rightarrow \infty .\) Therefore,

$$\begin{aligned} \begin{aligned} \left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j \times \frac{\sum _i |a_i \hat{x}_r^i|}{\sum _i|a_i \hat{x}_k^i|}&=\left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j \times \frac{\sum _{i=0}^{n}|a_i \hat{x}_r^i|}{(1+\delta _1) \sum _{m={j}}^{n}|a_m\hat{x}_{k}^m|}\\&=\frac{1}{1+\delta _1}\left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j \times \frac{\sum _{i=0}^{n}|a_i \hat{x}_r^i|}{|a_j\hat{x}_r^j|}\times \frac{|a_j\hat{x}_r^j|}{ \sum _{m={j}}^{n}|a_m\hat{x}_{k}^m|}\\&\le \frac{n+1}{1+\delta _1} \times \left| \frac{\hat{x}_k}{\hat{x}_r}\right| ^j\times \frac{|a_j\hat{x}_r^j|}{ \sum _{m={j}}^{n}|a_m\hat{x}_{k}^m|}\\&\le \frac{n+1}{1+\delta _1} \frac{(1+|\gamma _k|)^{j}}{(1-|\gamma _r|)^{j}} \times \left| \frac{{x}_k}{{x}_r}\right| ^j\times \frac{(1+|\gamma _r|)^{n}}{(1-|\gamma _k|)^{n}}\frac{|a_jx_r^j|}{ \sum _{m={j}}^{n}|a_m{x}_{k}^m|}\\&= \gamma \beta \times \frac{\left| \sum _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-j}}\right| }{\sum _{m={j}}^{n}\left| \sum _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| },\\ \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \gamma =\frac{(1+|\gamma _k|)^{j}}{(1-|\gamma _r|)^{j}}\frac{(1+|\gamma _r|)^{n}}{(1-|\gamma _k|)^{n}}\rightarrow 1 \ \text {as}\ \gamma _r,\gamma _k \rightarrow 0, \end{aligned}$$

and

$$\begin{aligned} \beta =\frac{n+1}{1+\delta _1}\rightarrow n+1 \ \text {as}\ K\rightarrow \infty . \end{aligned}$$

When \(k<r\), we can analyze it similarly and we omit the details. \(\square \)

It should be mentioned that

$$\begin{aligned} \frac{|x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-j}}|}{|x_{\hat{l}_{1}}x_{\hat{l}_{2}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}|}=\frac{|x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-m}}|}{|x_{\hat{l}_{1}}x_{\hat{l}_{2}}\cdots x_{\hat{l}_{n-m}}|}\frac{|x_{l_{n-m+1}}\cdots x_{l_{n-j}}|}{|{x}_{k}^{m-j}|} \end{aligned}$$

can be much smaller than 1. However, it is hard to precisely say how small it is in this general case. But for the following cases, we can.

  1. Case 1:

    \(K_1|x_p|\le |x_{p+1}|\) for a large \(K_1\).

When \(r\le p\) and \(k\ge p+1\), j can be estimated.

If \(i>p,\) similarly to (B.4), we have

$$\begin{aligned} \begin{aligned} |a_i\hat{x}_r^i|=|a_p\hat{x}_r^p|(1+\hat{\delta }_{ip}), \ \text {where} \ \hat{\delta }_{ip}\rightarrow 0 \ \text {as} \ K_1\rightarrow \infty . \end{aligned} \end{aligned}$$

Hence that

$$\begin{aligned} j={\arg \max }_{i=0,1,\ldots ,n} |a_i\hat{x}_r^i| \le p. \end{aligned}$$

Similarly to (B.3), we have

$$\begin{aligned} \left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}x_{l_{2}}\cdots x_{l_{n-j}}\right| =(1+{\tilde{\delta }}_1) \left| \sum \limits _{1\le l_{p-j}<\cdots <l_{1}\le p} x_{n}\cdots x_{p+1}x_{l_{1}}\cdots x_{l_{p-j}}\right| , \end{aligned}$$

and

$$\begin{aligned} \sum _{m=j}^{n}\left| \sum _{1\le \hat{l}_{n-m}<\cdots<\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| =(1+{\tilde{\delta }}_2)\sum _{m=p}^{n}\left| \sum _{p+1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| , \end{aligned}$$

where \({\tilde{\delta }}_1, {\tilde{\delta }}_2\rightarrow 0\) as \(K_1\rightarrow \infty .\) Then

$$\begin{aligned} \begin{aligned} \frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}\cdots x_{l_{n-j}}\right| }{\sum \limits _{m={j}}^{n}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots<\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }&=\frac{1+{\tilde{\delta }}_1}{1+{\tilde{\delta }}_2} \frac{ \left| \sum \limits _{1\le l_{p-j}<\cdots<l_{1}\le p} x_{n}\cdots x_{p+1}x_{l_{1}}\cdots x_{l_{p-j}}\right| }{\sum \limits _{m=p}^{n}\left| \sum \limits _{p+1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| } \end{aligned} \end{aligned}$$

can be much smaller than 1 since that

$$\begin{aligned} \left| \frac{x_{n}x_{n-1}\ldots x_{p+1}x_{l_{1}}x_{l_{2}}\ldots x_{l_{p-j}}}{x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}}\right| = \left| \frac{x_{n}x_{n-1}\ldots x_{p+1}}{x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}x_k^{m-p}}\right| \left| \frac{x_{l_{1}}x_{l_{2}}\ldots x_{l_{p-j}}}{x_k^{p-j}}\right| \end{aligned}$$

can be much smaller than 1. Especially, when \(\{x_i\}_{i=p+1}^n\) are clustered, it has order of

$$\begin{aligned} \left| \frac{x_{l_{1}}x_{l_{2}}\ldots x_{l_{p-j}}}{x_k^{p-j}}\right| \le \frac{1}{K_1^{p-j}} \end{aligned}$$

since \(|x_{l_{i}}|\le |x_k|/K_1,\forall i\in \{1,\ldots , p-j\} .\)

When \(|x_r|\ge |x_{p+1}|\) and \(|x_k|\le |x_{p}|\), similarly, we have \(j\ge p\), and

$$\begin{aligned} \begin{aligned}&\frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}\ldots x_{l_{n-j}}\right| }{\sum \limits _{m=0}^{j}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots<\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }\\&\quad =\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2} \frac{ \left| \sum \limits _{1\le l_{p-j}<\cdots<l_{1}\le p} x_{n}\ldots x_{p+1}x_{l_{1}}\ldots x_{l_{p-j}}\right| }{\sum \limits _{m=0}^{p}\left| \sum \limits _{1\le \hat{l}_{p-m}<\cdots<\hat{l}_{1}\le p}x_{n}\ldots x_{p+1}x_{\hat{l}_{1}}\ldots x_{\hat{l}_{p-m}}{x}_{k}^{m-j}\right| }\\&\quad =\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2}\frac{ \left| \sum \limits _{1\le l_{p-j}<\cdots<l_{1}\le p} x_{l_{1}}x_{l_{2}}\ldots x_{l_{p-j}}\right| }{\sum \limits _{m=0}^{p}\left| \sum \limits _{1\le \hat{l}_{p-m}<\cdots <\hat{l}_{1}\le p}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{p-m}}{x}_{k}^{m-j}\right| },\\ \end{aligned} \end{aligned}$$

where \(\hat{\delta }_1,\hat{\delta }_2\rightarrow 0\) as \(K_1\rightarrow \infty .\)

  1. Case 2:

    \(K_1|x_{p_1}|\le |x_{p_1+1}|\) and \(K_2|x_{p_2}|\le |x_{p_2+1}|\) for large \(K_1\) and \(K_2\), assuming \(p_1<p_2\).

Assume \(p_1+1\le r\le p_2.\) Similarly to the analysis in case 1, we have

$$\begin{aligned} j\in \{p_1,p_1+1,\ldots ,p_2\}. \end{aligned}$$

When \(p_2+1\le k\le n\), we have

$$\begin{aligned} \begin{aligned} \frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}\ldots x_{l_{n-j}}\right| }{\sum \limits _{m={j}}^{n}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots<\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }&=\frac{1+{\tilde{\delta }}_1}{1+{\tilde{\delta }}_2} \frac{ \left| \sum \limits _{p_1+1\le l_{p_2-j}<\cdots<l_{1}\le p_2} x_{n}\cdots x_{p_2+1}x_{l_{1}}\cdots x_{l_{p_2-j}}\right| }{\sum \limits _{m=p_2}^{n}\left| \sum \limits _{p_2+1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}\cdots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }, \end{aligned} \end{aligned}$$

where \({\tilde{\delta }}_1,{\tilde{\delta }}_2\rightarrow 0\) as \(K_1,K_2\rightarrow \infty .\)

It can be much smaller than 1 since that

$$\begin{aligned} \left| \frac{x_{n}x_{n-1}\ldots x_{p_2+1}x_{l_{1}}x_{l_{2}}\ldots x_{l_{p_2-j}}}{x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}}\right| =\left| \frac{x_{n}x_{n-1}\ldots x_{p_2+1}}{x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}x_k^{m-p_2}}\right| \left| \frac{x_{l_{1}}x_{l_{2}}\ldots x_{l_{p_2-j}}}{x_k^{p_2-j}}\right| , \end{aligned}$$

where \(K_2|x|\le |x_k|\) for all \(x\in \{x_{l_1},\ldots , x_{l_{p_2-j}}\}\).

When \(1\le k\le p_1,\) we have

$$\begin{aligned} \begin{aligned}&\frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}\ldots x_{l_{n-j}}\right| }{\sum \limits _{m=0}^{j}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots<\hat{l}_{1}\le n}x_{\hat{l}_{1}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }\\&\quad =\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2} \frac{ \left| \sum \limits _{p_1+1\le l_{p-j}<\cdots<l_{1}\le p_2} x_{n}\ldots x_{p_2+1}x_{l_{1}}\ldots x_{l_{p_2-j}}\right| }{\sum \limits _{m=0}^{p_1}\left| \sum \limits _{1\le \hat{l}_{p_1-m}<\cdots<\hat{l}_{1}\le p_1}x_{n}\ldots x_{p_1+1}x_{\hat{l}_{1}}\ldots x_{\hat{l}_{p_1-m}}{x}_{k}^{m-j}\right| }\\&\quad =\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2} \frac{ \left| \sum \limits _{p_1+1\le l_{p_2-j}<\cdots<l_{1}\le p_2} x_{l_{1}}x_{l_{2}}\ldots x_{l_{p_2-j}}\right| }{\sum \limits _{m=0}^{p_1}\left| \sum \limits _{1\le \hat{l}_{p-m}<\cdots <\hat{l}_{1}\le p_1}x_{p_2}\ldots x_{p_1+1}x_{\hat{l}_{1}}\ldots x_{\hat{l}_{p_1-m}}{x}_{k}^{m-j}\right| }, \end{aligned} \end{aligned}$$

where \(\hat{\delta }_1,\hat{\delta }_2\rightarrow 0\) as \(K_1,K_2\rightarrow \infty .\) It can be much smaller than 1 since

$$\begin{aligned} \left| \frac{x_{l_{1}}x_{l_{2}}\ldots x_{l_{p_2-j}}}{x_{p_2}\ldots x_{p_1+1}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{p_1-m}}{x}_{k}^{m-j}}\right| =\left| \frac{x_k^{p_1-m}}{x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{p_1-m}}}\right| \left| \frac{x_k^{j-p_1}}{\varPi _{l\in {\{p_1+1,p_1+2,\ldots ,p_2\}\setminus \{l_1,\ldots ,l_{p_2-j}\}}}x_l}\right| , \end{aligned}$$

where \(|x_l| \ge K_1 |x_k|\) for all \({l\in {\{p_1+1,\ldots ,p_2\}\setminus \{l_1,\ldots ,l_{p_2-j}\}}}\).

We can have a similar analysis for \(r\le p_1\) and \(r\ge p_2+1\). We omit the details.

  1. Case 3:

    \(K_1|x_{p_1}|\le |x_{p_1+1}|\), \(K_2|x_{p_2}|\le |x_{p_2+1}|\), \(\dots \), \(K_i|x_{p_i}|\le |x_{p_i+1}|\) for large \(\{K_l\}_{l=1}^{i} \), assuming \(p_1<p_2<\cdots <p_i\). In this case, when \(p_j+1\le r\le p_{j+1},\) choose

    $$\begin{aligned} j\in \{p_j,p_j+1,\ldots ,p_{j+1}\} \end{aligned}$$

    to deflate \(\hat{x}_r\). We can have a similar estimation to case 2 and we omit the details.

  2. Case 4:

    \(K_1|x_{1}|\le |x_{2}|\), \(K_2|x_{2}|\le |x_{3}|\), \(\dots \), \(K_{n-1}|x_{n-1}|\le |x_{n}|\) for large \(\{K_l\}_{l=1}^{n-1} \).

For convenience, we denote \(K_0=K_n=\infty .\)

In this case, when deflating \(\hat{x}_r\), we have

$$\begin{aligned} j \in \{r-1,r\}. \end{aligned}$$

When \(k>r,\) similarly to (B.3),

$$\begin{aligned} \left| \sum \limits _{1\le l_{n-j}<\cdots <l_{1}\le n}x_{l_{1}}\ldots x_{l_{n-j}}\right| =(1+{\tilde{\delta }}_1)\left| x_{n}x_{n-1}\ldots x_{j+1}\right| , \end{aligned}$$

where \({\tilde{\delta }}_1 \rightarrow 0\) as \(K_j\rightarrow \infty .\) According to Proposition B.2,

$$\begin{aligned} \sum \limits _{m=j}^{n}\left| \sum _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| =2\left| x_{n}x_{n-1}\ldots x_{k+1}x_{k}^{k-j}\right| (1+{\tilde{\delta }}_2), \end{aligned}$$

and \({\tilde{\delta }}_2\rightarrow 0\) as \(K_{k-1},K_{k}\rightarrow \infty .\)

Then we have

$$\begin{aligned} \begin{aligned} \frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}\ldots x_{l_{n-j}}\right| }{\sum \limits _{m=j}^{n}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }&=\frac{1+{\tilde{\delta }}_1}{1+{\tilde{\delta }}_2}\frac{\left| x_{n}x_{n-1}\ldots x_{j+1}\right| }{2\left| x_{n}x_{n-1}\ldots x_{k+1}x_{k}^{k-j}\right| }\\&=\frac{1+{\tilde{\delta }}_1}{1+{\tilde{\delta }}_2}\left\{ \begin{array}{lll} \frac{1}{2} \left| \frac{x_{k-1}}{x_{k}}\right| \ldots \left| \frac{x_{r+1}}{x_{k}}\right| , &{} j=r,\\ \frac{1}{2} \left| \frac{x_{k-1}}{x_{k}}\right| \ldots \left| \frac{x_{r}}{x_{k}}\right| , &{} j=r-1, \end{array}\right. \end{aligned} \end{aligned}$$

where \({\tilde{\delta }}_1 \rightarrow 0\) as \(K_j\rightarrow \infty \) and \({\tilde{\delta }}_2\rightarrow 0\) as \(K_{k-1},K_{k}\rightarrow \infty .\)

Similarly, when \(k<r\), we have

$$\begin{aligned} \begin{aligned} \frac{\left| \sum \limits _{1\le l_{n-j}<\cdots<l_{1}\le n}x_{l_{1}}x_{l_{2}}\ldots x_{l_{n-j}}\right| }{\sum \limits _{m=0}^{j}\left| \sum \limits _{1\le \hat{l}_{n-m}<\cdots <\hat{l}_{1}\le n}x_{\hat{l}_{1}}x_{\hat{l}_{2}}\ldots x_{\hat{l}_{n-m}}{x}_{k}^{m-j}\right| }&=\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2}\frac{\left| x_{n}x_{n-1}\ldots x_{j+1}\right| }{2\left| x_{n}x_{n-1}\ldots x_{k+1}x_{k}^{k-j}\right| }\\&=\frac{1+\hat{\delta }_1}{1+\hat{\delta }_2}\left\{ \begin{array}{lll} \frac{1}{2} \left| \frac{x_{k}}{x_{r}}\right| \ldots \left| \frac{x_{k}}{x_{k+1}}\right| , &{} j=r,\\ \frac{1}{2} \left| \frac{x_{k}}{x_{r-1}}\right| \ldots \left| \frac{x_{k}}{x_{k+1}}\right| , &{} j=r-1, \end{array}\right. \end{aligned} \end{aligned}$$

where \(\hat{\delta }_1\rightarrow 0\) as \(K_j\rightarrow \infty \) and \(\hat{\delta }_2\rightarrow 0\) as \( K_{k-1},K_{k} \rightarrow \infty \).

All the cases above show that composite deflation can lead to improved the backward stability of the remaining approximate roots when they vary widely in order of magnitude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Su, Y. A further analysis of backward error in polynomial deflation. Bit Numer Math 59, 271–297 (2019). https://doi.org/10.1007/s10543-018-0724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0724-y

Keywords

Mathematics Subject Classification

Navigation