Skip to main content
Log in

A compact finite difference method for solving a class of time fractional convection-subdiffusion equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A high-order compact finite difference method is proposed for solving a class of time fractional convection-subdiffusion equations. The convection coefficient in the equation may be spatially variable, and the time fractional derivative is in the Caputo’s sense with the order \(\alpha \) (\(0<\alpha <1\)). After a transformation of the original equation, the spatial derivative is discretized by a fourth-order compact finite difference method and the time fractional derivative is approximated by a \((2-\alpha )\)-order implicit scheme. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using the discrete energy method, and the optimal error estimates in the discrete \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained. Applications using several model problems give numerical results that demonstrate the effectiveness and the accuracy of this new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT. doi:10.1007/s10543-014-0484-2

  3. Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 11, 20140352–20140352 (2014)

    Article  Google Scholar 

  4. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction-diffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.M., Liu, F., Turner, I., Anh, V.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation. J. Appl. Math. Comput. 26, 295–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cui, M.: A high-order compact exponential scheme for the fractional convection-diffusion equation. J. Comput. Appl. Math. 255, 404–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. I. Osaka J. Math. 27, 309–321 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. II. Osaka J. Math. 27, 797–804 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, Y., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 56, 303–334 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  19. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  20. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  21. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Q., Gu, Y.T., Zhuang, P., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    Article  MathSciNet  Google Scholar 

  31. Luchko, Yu.: Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2, 463–489 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Luchko, Yu., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Int. J. Geomath. 1(2), 257–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  35. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37, R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection-dispersion equation. Numer. Algor. 63, 431–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  40. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  41. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc–Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)

    Book  MATH  Google Scholar 

  43. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algor. 56, 383–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Uchaikin, V.V.: Method of Fractional Derivatives. Ul’janovsk, Artishok (2008). (in Russian)

    Google Scholar 

  47. Uddin, M., Hag, S.: RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 4208–4214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  49. Wyss, W.: Fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

  53. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  54. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhen, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 74, 645–667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Additional information

Communicated by Jan Hesthaven.

This work was supported in part by E-Institutes of Shanghai Municipal Education Commission No. E03004 and Shanghai Leading Academic Discipline Project No. B407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM. A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. Bit Numer Math 55, 1187–1217 (2015). https://doi.org/10.1007/s10543-014-0532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0532-y

Keywords

Mathematics Subject Classification

Navigation