Skip to main content
Log in

A new iterative algorithm for mean curvature-based variational image denoising

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The total variation semi-norm based model by Rudin-Osher-Fatemi (in Physica D 60, 259–268, 1992) has been widely used for image denoising due to its ability to preserve sharp edges. One drawback of this model is the so-called staircasing effect that is seen in restoration of smooth images. Recently several models have been proposed to overcome the problem. The mean curvature-based model by Zhu and Chan (in SIAM J. Imaging Sci. 5(1), 1–32, 2012) is one such model which is known to be effective for restoring both smooth and nonsmooth images. It is, however, extremely challenging to solve efficiently, and the existing methods are slow or become efficient only with strong assumptions on the formulation; the latter includes Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313–344, 2011).

Here we propose a new and general numerical algorithm for solving the mean curvature model which is based on an augmented Lagrangian formulation with a special linearised fixed point iteration and a nonlinear multigrid method. The algorithm improves on Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313–344, 2011). Although the idea of an augmented Lagrange method has been used in other contexts, both the treatment of the boundary conditions and the subsequent algorithms require careful analysis as standard approaches do not work well. After constructing two fixed point methods, we analyze their smoothing properties and use them for developing a converging multigrid method. Finally numerical experiments are conducted to illustrate the advantages by comparing with other related algorithms and to test the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Blomgren, P., Mulet, P., Chan, T.F., Wong, C.K.: Total variation image restoration: numerical methods and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing, Santa Barbara, CA, vol. 3, pp. 384–387 (1997)

    Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  4. Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3), 363–389 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued images. IEEE Trans. Image Process. 19(6), 1518–1527 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  7. Chumchobn, N., Chen, K., Brito-Loeza, C.: Fourth order variational image registration on model and its fast multigrid algorithm. SIAM Multiscale Model. Simul. 9(1), 89–128 (2011)

    Article  Google Scholar 

  8. Chumchobn, N., Chen, K., Brito-Loeza, C.: Variational model for removal of combined additive and multiplicative noise. Int. J. Comput. Math. 90(1), 140–161 (2013)

    Article  MathSciNet  Google Scholar 

  9. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., et al. (eds.) Computational and Mathematical Models of Microstructural Evolution, pp. 39–46. Materials Research Society, Warrendale (1998)

    Google Scholar 

  10. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. See www.math.utah.edu/~eyre/research/methods/stable.ps. Unpublished article (1998)

  11. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  19. Shyy, W., Sue, C.-S.: Development of a pressure-correction/staggered-grid based multigrid solver for incompressible recirculating flows. Comput. Fluids 22(1), 51–76 (1993)

    Article  MATH  Google Scholar 

  20. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastic method using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  22. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  23. Wienands, R., Joppich, W.: Practical Fourier Analysis for Multigrid Methods. Chapman and Hall/CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  24. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  MATH  Google Scholar 

  27. Zhang, J.P., Chen, K., Yu, B.: An iterative Lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, W., Chan, T.F.: Image denoising using mean curvature. SIAM J. Imaging Sci. 5(1), 1–32 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhu, W., Tai, X.-C., Chan, T.F.: Augmented Lagrangian method for a mean curvature based image denoising model. UCLA CAM report 12-02 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen.

Additional information

Communicated by Rosemary Renaut.

This work is supported by the Fundamental Research Funds for the Central Universities (lzujbky-2013-15).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Chen, K. A new iterative algorithm for mean curvature-based variational image denoising. Bit Numer Math 54, 523–553 (2014). https://doi.org/10.1007/s10543-013-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0448-y

Keywords

Mathematics Subject Classification (2010)

Navigation